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Abstract: We propose the use of Genetic Programming (GP) to generate new features to predict localised muscles fatigue from 

pre-filtered surface EMG signals. In a training phase, GP evolves programs with multiple components. One 

component analyses statistical features extracted from EMG to divide the signals into blocks. The blocks’ labels are 

decided based on the number of zero crossings. These blocks are then projected onto a two-dimensional Euclidean 

space via two further (evolved) program components. K-means clustering is applied to group similar data blocks. 

Each cluster is then labelled into one of three types (Fatigue, Transition-to-Fatigue and Non-Fatigue) according to the 

dominant label among its members. Once a program is evolved that achieves good classification, it can be used on 

unseen signals without requiring any further evolution. During normal operation the data are again divided into blocks 

by the first component of the program. The blocks are again projected onto a two-dimensional Euclidean space by the 

two other components of the program. Finally blocks are labelled according to the k-nearest neighbours. The system 

alerts the user of possible approaching fatigue once it detects a Transition-to-Fatigue. In experimentation with the 

proposed technique, the system provides very encouraging results. 

1 INTRODUCTION 
The electro-myo-gram (EMG) is a test used to 

record the electrical activity of muscles (Lieber 2002). 

Muscles produce an electrical potential that is non-

linearly related to the amount of force produced in a 

muscle. Analyzing these signals and associating them 

with muscle state has been an area of active research in 

the biomedical community for many decades. For 

example, Sony (Dubost & Tanaka 2002) has presented a 

hardware system for musical applications that is 

controlled by EMG signals. The system is able to 

recognise different gestures and associate them with 

particular commands to the machine. Detecting muscle 

fatigue, however, is still an extremely challenging task. 

Atieh et al. (Atieh 2005) tried to design more 

comfortable car seats by trying to identify and classify 

EMG signals using data mining techniques and statistical 

analysis to determine localised muscle fatigue. Artificial 

neural networks have been used to detect muscle activity 

by Moshoua et al. (Moshoua, Hostensa & Papaioanno 

2005). In that work, wavelet coefficients were proposed 

as features for identifying muscle fatigue. Song and 

collaborators (Song, Jung & Zeungnam 2006) proposed 

an EMG pattern classifier of muscular fatigue. The 

adaptation process of hyperboxes of fuzzy Min-Max 

neural networks was shown to significantly improve 

recognition performance. 

In this paper we investigate the idea of predicting 

localised muscle fatigue by identifying a transition state 

which resides between the non-fatigue and the fatigue 

stages within the EMG signal. Genetic Programming 

(GP) has been used to automate this process (Poli, 

Langdon & McPhee 2008).  

As we will illustrate in the following sections, the 

proposed approach was able to give an early warning 

before the onset of fatigue in most of the experimental 

cases we looked at. Therefore, this approach shows some 

potential for application domains such as ergonomics, 

sports physiology, and physiotherapy. 

2 THE METHODOLOGY  
We try to spot regularities within the EMG data and 

to associate them to one of three classes: i) Non-Fatigue, 

ii) Transition-to-Fatigue, and iii) Fatigue. Each class 

indicates the state of the muscle at a particulate time. 

The system works in two main stages: i) Training, 

where the system learns to match different signals’ 

characteristics with different classes, and ii) Testing, 

where the system applies what it has learnt to classify 

unseen data. 

In the training phase, the system processes filtered 

EMG signals and performs two major functions: i) 



 

Segmentation of the signals based on their statistical 

features, and ii) Classification of the identified segments 

based on their types (i.e., Non-Fatigue, Transition-to-

Fatigue, or Fatigue). For these tasks, GP has been 

supplied with a language that allows it to extract 

statistical features from EMG. Table 1 reports the 

primitive set of the system. 
Table 1. Primitive Set 

Primitive Set Input 

Median, Mean, Avg_dev, Std, 

Variance, Signal size, Skew, 

Kurtosis, Entropy, Zero crossings 

 

Vector of real 

number 

+, -, /, *, Sin, Cos, Sqrt Real Number 

The system starts by randomly initialising a 

population of individuals using the ramped half-and-half 

method (Poli, Langdon & McPhee 2008). Each 

individual has a multi-tree representation. In particular, 

each individual is composed of one splitter tree, and two 

feature-extraction trees. (Multi-tree representations of 

this kind are common in GP, and have been used, for 

example, for data classification in (Estevez & Pablo 

2007) ).  

2.1. Splitter Tree 
The main job of splitter trees is to split the EMG 

signals in the training set into meaningful segments, 

where by “meaningful” we mean that each segment 

indicates the state of a muscle at a particular time. 

The system moves a sliding window of size L over 

the given EMG signal with steps of S samples. At each 

step the splitter tree is evaluated. This corresponds to 

applying a function, fsplitter, to the data within the 

window. The output of the program is a single number, 

λ, which is an abstract representation of the features of 

the signal in the window. The system splits the signal at 

a particular position if the difference between the λ’s in 

two consecutive windows is more than a predefined 

threshold θ. The threshold θ has been selected arbitrarily 

(θ = 10). 

Once the data have been divided into blocks, the 

system labels each block with one of the three identified 

classes based on the number of zero crossings in the raw 

EMG signal, i.e., the number of times the signal crosses 

the zero-amplitude line (details are in section 2.3). A 

good splitter tree should be able to place block 

boundaries at the transitions between three types of 

muscle states: i) Non-Fatigue, ii) Transition-to-Fatigue, 

and iii) Fatigue.  

Preliminary tests showed that an average EMG signal 

in our set has 50% of non-fatigue, 10% transition-to-

fatigue and the remaining 40% is fatigue. Thus, the 

splitter tree can be considered to be good if it divides the 

signal into the three types of blocks with both 

meaningful proportions (i.e., fatigue > non-fatigue > 

transition-to-fatigue) and meaningful sequence (non-

fatigue should appear before transition-to-fatigue and 

fatigue). Splitter trees that violate these conditions are 

discouraged by penalizing their fitness value (see section 

2.4).  

2.2. Feature-Extraction Tree 
The main job of the two feature-extraction trees in 

our GP representation is to extract features using the 

primitives in  Table 1 from the blocks identified by the 

splitter tree and to project them onto a two dimensional 

Euclidian space, where their classification can later take 

place.  

We used a standard pattern classification approach on 

the outputs produced by the two feature-extraction trees 

to discover regularities in the training signals. In 

principle, any classification method can be used with our 

approach. Here, we decided to use K-means clustering to 

organise blocks (as represented by their two composite 

features) into groups. With this algorithm, objects within 

a cluster are similar to each other but dissimilar from 

objects in other clusters. The advantage with this 

approach is that the experimenter doesn’t need to label 

the training set. Also, the approach does not impose any 

constrains on the shape of the clusters. Once the training 

set is clustered, we can use the clusters found by K-

means to perform classification of unseen data.  

In the testing phase, unseen data go through the three 

components of the evolved solution. Blocks are produced 

by the splitter tree and then projected onto a two-

dimensional Euclidean space by the two feature-

extraction trees. Then, they are classified based on the 

majority class labels of their k-nearest neighbours. We 

use a weighted majority voting, where each nearest 

neighbour is weighted based on its distance from the 

newly projected data point. More specifically the weight 

is w = 1 / distance (xi, zi,), where xi is the nearest 

neighbour and zi is the newly projected data point. 

Once the system detects a transition-to-fatigue, it 

alerts the user about a possible approaching fatigue.  

2.3. Labelling the training set  
The approach described above is based on an 

unsupervised learning model. In our case the given EMG 

signals in the training set are unlabelled. Here, we used 

the zero crossings to recognise the state of the muscle.  

There are several ways to recognise muscle state 

from the EMG signal. Some Authors (Mannion et al. 

1997; Finsterer 2001) argue in favour of the idea of 

counting the number of times the amplitude of the signal 

crosses the zero line based on the fact that a more active 



 

muscle will generate more action potentials, which 

overall causes more zero crossings in the signal. 

However, at the onset of fatigue the zero crossings will 

drop drastically due to the reduced conduction of 

electrical current in the muscle.  

Hence, our system decides the labels of the blocks 

found by the splitter tree in the training set based on the 

number of zero crossings of the EMG signal. Before the 

system starts the evolution process, it scans the training 

set signals and divides them into blocks of predefined 

length. The number of zero crossings from each block is 

stored in a sorted vector that does not allow duplicate 

elements. Then, the system divides this vector into three 

parts. The lower 40% is taken to represent fatigue, the 

middle 10% represents transition-to-fatigue, and the 

higher 50% is non-fatigue. These three propositions 

(10%, 40% and 50%) were selected based on the 

preliminary tests with the EMG signals (as we mentioned 

in Section 2.1). The numbers of zero-crossings of the 

blocks in these three groups are then used to identify 

three intervals. Later, the output of the splitter trees is 

classified into one of these three groups based on the 

interval in which the number of zero crossings in it falls.  

Despite the simplicity of this labelling technique, the 

labels that it assigned to the output of the splitter trees 

were consistent and were judged by an expert to indicate 

the muscle state in most of the cases. However, noise in 

some parts of the EMG signal can result in wrong labels. 

Sometimes when the EMG signal is noisy, the labels 

tend to not be in a meaningful sequence and do not 

reflect the actual state of the muscle. To solve this 

problem, we carefully selected a training set with the 

least noisy signals. Also, each fragment of signal in the 

training set was manually screened to ensure that it had 

the correct label. 

2.4. Fitness Measurement 
The calculation of the fitness is divided into two 

parts. Each part contributes with equal weight to the total 

fitness. The fitness contribution of the splitter tree is 

measured as follows. 

Splitter tree fitness is measured by assessing the 

amount of help provided to the feature extraction trees in 

projecting the segments into tightly grouped and well 

separated clusters, plus a penalty if required. More 

formally, the quality of the splitter tree can be expressed 

as follows. Let fFeature-extraction be the fitness of the feature-

extraction trees, and µ  a penalty values:  

fSplitter =  ffeature-extraction + µ.  

where µ is added if, for example, the splitter does not 

respect the non-fatigue/transition-to-fatigue/fatigue 

sequence. The value of µ  is fixed. 

The second part of the individual’s fitness is the 

classification accuracy (with K-means) provided by the 

feature-extraction trees. After performing the clustering 

using K-means we evaluate the accuracy of the 

clustering by measuring cluster homogeneity and 

separation. The homogeneity of the clusters is calculated 

as follows.  

The system counts the members of each cluster. Note 

that, each data point in the cluster represents a block of 

the signal. Since we already know (from the previous 

step) the label for each block, we label the clusters 

according to the dominant members. The fitness function 

rates the homogeneity of clusters in terms of the 

proportion of data points – blocks – that are labelled as 

the muscle’s state that labels the cluster. The system 

prevents the labelling of different clusters with the same 

label even in cases where the proportions in two or more 

clusters are equal.  

The Davis Bouldin Index (DBI) (Bezdek & Pal 1998) 

was used to measure clusters separation. DBI is a 

measure of the nearness of the clusters’ members to their 

centroids and the distance between clusters’ centroids. A 

small DBI index indicates well separated and grouped 

clusters. Therefore, we add the negation of the DBI index 

to the total feature extraction fitness in order to 

encourage evolution to separate clusters (i.e., minimise 

the DBI). It should be noted that the DBI here is treated 

as a penalty value, the lower the DBI the lower penalty 

applied to the fitness. 

 Thus, the fitness of feature extraction trees is as 

follows. Let H be a function that calculates the 

homogeneity of a cluster and let CLi be the i
th

 cluster. 

Furthermore, let K be the total number of clusters (three 

clusters in our case: fatigue, transition-fatigue and non-

fatigue). Then, 

fHomogeneity = DBI
K

)H(CL
K

=i
i

−

∑
1

 
The total fitness of the individual is: 

f = (ffeature-extraction /2) + (fSplitter /2)  

3 EXPERIMENTS  
Experiments have been conducted in order to 

investigate the performance of the proposed technique. 

The aim of these experiments is to measure the 

prediction accuracy with different EMG signals.  

3.1. EMG Recording  
The data was collected from three healthy subjects 

(aged 23-25, non-smoker, athletic background). The 

local ethical committee approved the experiment’s 

design. The three participants were willing to reach 



 

physical fatigue state but not psychological fatigue. 

Selection criteria were used to minimise the differences 

between the subjects, which would facilitate the analysis 

and comparison of the readings. The participants had 

comparable physical muscle strength. It was also 

preferred that the subjects had an athletic background 

with a similar muscle mass, which would facilitate the 

correlation of the results. It was also important that the 

volunteers were non-smokers, as it is known that 

smoking affects physical abilities, which again could 

lead to inaccurate readings of muscle fatigue in a 

participant who smokes.  

 The participants were seated on a chair. Each 

participant was asked to hold a weight training bar - 

dumbbell – until their muscle fatigued. The steps in our 

test bed set up are the following: 1) A bipolar pair of 

electrodes was placed on the right arm's biceps muscle 

for EMG recording. 2) The force gauge was 

perpendicular to the dumbbell to ensure that the force 

gauge was taking the correct reading. 3) A strap wass 

handed to participants to enable the force gauge reading. 

4) A protractor was used to ensure a 90 degree angle of 

the elbow for the initial setup. 5) A dumbbell was handed 

to the participant. 6) A laser was embedded in the 

dumbbell to give visual guidance of the elbow angle. 7) 

The elbow position was padded, so the participant was 

comfortable. 

The myoelectric signal was recorded using two 

channels; Double Differential (DD) recording equipment 

at 1000Hz sampling rate with active electrodes on the 

biceps branchii during two isometric dumbbell exercises, 

with 30% Maximum Voluntary Contraction “MVC” and 

80% “MVC” respectively. For each of the three 

participants 6 trials were carried out, providing 18 trials 

in total. 

3.2. GP Setup  
Of the 18 EMG signals (trials) acquired, we used 3 

trials for the training set, one trail from each subject. In 

this way we hoped we would allow GP to find common 

features for the three different participants and build a 

general prediction model. The experiments that are 

presented here were done using the following 

parameters: population of size 100, maximum number of 

generations 30, crossover with probability of 90%, 

mutation with probability 5%, reproduction with 

probability 5%, tournament selection of size 5 and 

maximum tree depth of 10. 

The performance of our approach has been measured 

through 18 independent runs, each of which trains the 

system and uses the output of the training to predict the 

muscle state of 15 EMG signals (5 signals for each 

participant). The aim is to obtain a good prediction for 

each participant and a reasonably general prediction 

algorithm that performs well on average for all 

participants. Each GP run results in one splitter tree and 

two feature extraction trees. Since during offline tests it 

is possible to know the actual label for each block by 

counting its number of zero crossings, we compared the 

GP predictions against the actual labels and counted the 

proportion of times this was correct (hit rate).  

Table 2 reports the best achieved hit rate for each test 

signal, as well the average hit rate in all runs. Also, the 

worst hit rates are presented to show the algorithm 

performance in its worst case. Moreover, standard 

deviation for each signal is presented to illustrate the 

system's robustness. The last row of Table 2 reports the 

approximate average processing time for both training 

and testing. 
Table 2: Summary of performance of 18 different GP runs 

Signal Avg. Hit Best Hit Worst Hit Std. 

A1 60.36% 77.27% 37.84% 8.99 

A2 57.54% 77.36% 38.89% 9.03 

A3 60.69% 85.71% 39.39% 11.24 

A4 62.40% 100% 25.00% 19.31 

A5 57.96% 81.82% 9.09% 17.92 

B1 56.62% 90% 39.29% 13.10 

B2 62.73% 82.35% 41.18% 12.98 

B3 41.67% 100% 0.00% 28.58 

B4 65.08% 100% 0.00% 23.78 

B5 58.24% 100% 25.00% 20.00 

C1 67.08% 100% 42.31% 14.73 

C2 62.28% 78.79% 43.59% 8.27 

C3 66.05% 85.71% 40.00% 11.76 

C4 56.75% 100% 0.0% 16.56 

C5 65.34% 100% 16.56% 42.84 

Average Testing Time 

Average Training Time 

1 min/test signal 

18 Hours 

 

Figure 1 summarise the runs’ information. We 

measured the quality of each run by calculating the 

average hit rate for all test signals (test set). This reflects 

the accuracy of the evolved programs when dealing with 

signals from different participants. More specifically, the 

first column in the histogram in Figure 1 shows the 

average of the runs’ qualities (i.e., the average of the 

averages). The second column in the figure shows the 

quality (i.e., average hit rate for all test signals) of the 



 

best evolved predictor. The third column shows the 

quality of the worst evolved predictor. Finally, the last 

column shows the average standard deviation for all 

runs. The low standard deviation with the reasonable 

average prediction accuracy indicates that our system i

likely to produce accurate models within a few runs

Figure 1: Summary of 18 runs

Table 3 reports the performance of the best evolved 

predictor as well as the performance of the worst, signal 

by signal. It should be noticed that the achieved results 

are promising, especially considering that the system is 

predicting muscle fatigue for three different individuals.
Table 3: Best GP test run vs. worst GP test run

Signal/ results Best run Worst run

A1 66.67% 

A2 66.66% 

A3 75.47% 

A4 25% 

A5 66.67% 

B1 90% 

B2 81.25% 

B3 50% 

B4 100% 

B5 100% 

C1 100% 

C2 78.79% 

C3 75% 

C4 80% 

C5 100% 

4 CONCLUSION  
Our results are encouraging, in the sense that a good 

prediction has been achieved and further significant 

improvements could be obtained.  

Although, this approach has achieved good prediction 

rates (100% in some cases), it suffers from a major 

disadvantage. The proposed labeling mechanism 

predictor. The third column shows the 

quality of the worst evolved predictor. Finally, the last 

column shows the average standard deviation for all 

runs. The low standard deviation with the reasonable 

average prediction accuracy indicates that our system is 

likely to produce accurate models within a few runs. 

 

Figure 1: Summary of 18 runs 

Table 3 reports the performance of the best evolved 

predictor as well as the performance of the worst, signal 

by signal. It should be noticed that the achieved results 

are promising, especially considering that the system is 

predicting muscle fatigue for three different individuals. 
Table 3: Best GP test run vs. worst GP test run 

Worst run 

37.84% 

53.12% 

48.91% 

50% 

40% 

40.74% 

65.52% 

33.33% 

50% 

42.86% 

42.31% 

43.84% 

56.25% 

69.23% 

42.857% 

Our results are encouraging, in the sense that a good 

prediction has been achieved and further significant 

Although, this approach has achieved good prediction 

(100% in some cases), it suffers from a major 

e. The proposed labeling mechanism – being 

based on zero crossings – is not very reliable

described in section 2.3). This is due to the fact that t

number zero crossings is affected by noise. Thus, the 

labels of the signal’s blocks might not be accur

has the potential to hamper or prevent learning in the 

system. We avoided this problem altogether by carefully 

selecting the least noisy signals for the training set and 

suitably preprocessing the signals. Nevertheless, there 

remains the possibility that some erro

still occur. 

There are many directions for us to further improve 

the performance of this technique. For example, a simple 

extension in the set of statistical functions available in 

the primitive set might improve the 

accuracy. Also, the use of more sophisticated technique 

to label the EMG blocks (e.g., fuzzy classification) might 

improve the system’s reliability and flexibility.
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