
Bayesian Inference to Sustain Evolvability in
Genetic Programming

Ahmed Kattan1, Yew-Soon Ong2

1AI Real-World Application Lab, UQU, Saudi Arabia
3School of Computer Engineering, Nanyang Technological University, Singapore

ajkatta@uqu.edu.sa, asysong@ntu.edu.sg

Abstract. This paper proposes a new framework, referred to as Recur-
rent Bayesian Genetic Programming (rbGP), to sustain steady conver-
gence in Genetic Programming (GP) (i.e., to prevent premature conver-
gence) and effectively improves its ability to find superior solutions that
generalise well. The term ‘Recurrent’ is borrowed from the taxonomy
of Neural Networks (NN), in which a Recurrent NN (RNN) is a special
type of network that uses a feedback loop, usually to account for tem-
poral information embedded in the sequence of data points presented
to the network. Unlike RNN, our algorithm’s temporal dimension per-
tains to the sequential nature of the evolutionary process itself, and not
to the data sampled from the problem solution space. rbGP introduces
an intermediate generation between each subsequent generation in order
to collect information about the offspring’s fitness distribution of each
parent. Placing the collected information into a Bayesian model, rbGP
predicts the probability of any individual to produce offspring fitter than
its parent. This predicted probability (calculated by the Bayesian model)
is used by the tournament selection instead of the original fitness value.
Empirical evidence, from 13 problems, against canonical GP, demon-
strates that rbGP preserves generalisation in most cases.

1 Introduction

In our previous work [5], we introduced a new framework for Genetic Algorithm
(GA) referred to as Recurrent Genetic Algorithms (RGA). RGA guided the
evolutionary process of GA using a reverse form of fitness inheritance [3]. Smith
et al. [13] first introduced the technique of fitness inheritance identifying two
types of inheritance: the first which takes the average of the fitness values of
the two parents and the second takes the weighted average according to the
similarity between offspring and their parents. While the standard notion of
fitness inheritance presented as a reward for offspring based on their parents’
performance (assuming a level of smoothness in the search space), RGA uses a
reversed concept of the standard fitness inheritance in which the parents’ fitness
values are readjusted based on the fitness of their offspring, thus presenting
an indication of individuals’ level of evolvability. To this end, RGA uses an
intermediate population (called P̂) between each subsequent generation. This
intermediate population is used as a feedback loop that recurrently adjusts the
fitness values of individuals in population P , at the ith generation, based on
the fitness of their offspring in population P̂i (i.e., the intermediate population).
Empirical evidence illustrated that this recurrent process of fitness adjustment
reinforces the evolvability of subsequent generations by ensuring that parents at

2 A. Kattan and Y. Ong

Pi are rewarded for producing fit offspring and then given a second chance to
reproduce.

In this work, we extend the RGA framework presented in [5] to Genetic
Programming (GP) [12] and present a new framework referred to as Recurrent
Bayesian Genetic Programming (rbGP). rbGP, also, introduces an intermedi-
ate population between each subsequent generation. However, away from the
reversed fitness inheritance concept adopted by RGA, rbGP uses a Bayesian
model [4] to readjust individuals’ fitness values based on their probability to
produce fitter offspring. To this end, rbGP forces each selected individual in
population Pi, where i is the number of generation, to produce k number of
offspring to generate population P̂i (i.e., the intermediate population). Hence,
rbGP collects information about the offspring fitness distribution of each selected
parent and utilise this information to build a Bayesian model. rbGP employs the
Bayesian model as method of inference to readjust the fitness values of individu-
als in population Pi. Thus, rbGP uses each individual’s probability of producing
fitter offspring (as measured by the k offspring when generating the intermediate
population), and the likelihood of the population to produce fitter offspring, in
the Bayesian model to rank individuals. To this end, individuals that may lead
the search to premature convergence (i.e., their immediate fitness gain may not
lead to long-term improvement in the search) receive lower rankings in order to
prevent sudden premature convergence. Details of this process are provided in
Section 3. In this paper, the term ‘successful parent’ will refer to parents that
can produce fitter offspring.

This paper is organised into six sections. Section 2 reviews some related
works. Section 3 explains rbGP in detail. Sections 4 and 5 discuss the experi-
mental setup and the results, respectively. Finally, some conclusive remarks and
future directions for research are presented in Section 6.

2 Related-Work

As mentioned earlier, rbGP uses Bayesian model as a method of inference to
readjust the fitness values of individuals in order to prevent premature con-
vergence. The whole process adopted by rbGP sustains evolvability. Therefore,
the literature review focuses on previous works related to works that define the
concept of evolvability and Bayesian models in GP.

2.1 Evolvability

The notion of “evolvability” is defined as “the ability of a population to pro-
duce variants fitter than any yet existing” [1]. Hence, generally, the choice of
selection, search operator and representation is vital to the performance of GP
because they control the creation of new individuals throughout the evolution-
ary process. One aim of researchers in the Evolutionary Computation (EC) field
is to discover new methods for increasing evolvability of evolutionary systems.
The term evolvability does not only refer to how often offspring are fitter than
their parents but also to the entire distribution of fitness values among offspring
produced by a group of parents [1].

The concept of evolvability has been an active research area in both evo-
lutionary biology and computer science for the past several decades. Hu and
Banzhaf in [9] have argued that adopting new knowledge about natural evolu-
tion generated in areas such as molecular genetics, cell biology, developmental

Bayesian Inference to Sustain Evolvability in Genetic Programming 3

biology, and evolutionary biology would benefit the field of evolutionary compu-
tation. The authors discussed evolvability and methods for accelerating artificial
evolution by introducing notions from biology and their potential in designing
new algorithms in EC.

It has been recorded that the evolvability property has good effect on the
search process. For example, in [2], the authors suggested that evolvability can
effectively reduce the bloat in evolutionary algorithms that use variable length
representations. In their work, the authors noted the similarity of bloat causes
and evolvability theory, thus, they argue that reproductive operators with high
evolvability will be less likely to cause bloat.

With the importance of evolvability as a research topic, several measurements
have been proposed to quantify it. Wang and Wineberg [14], suggested two mea-
sures of evolvability one based on fitness improvement and the other based on
the amount of genotypic change. The authors divided the population into three
sub-populations, where the size of each sub-population is determined dynami-
cally. The first sub-population uses selection based on fitness directly; the sec-
ond sub-population is based on the fitness-improvement-ratio; finally, selection
for the third sub-population is based on genotypic change. Each sub-population
is filled by selecting chromosomes from the parent’s generation under its own
selection functions. Thereafter, the three sub-populations are merged, and the
standard GA search operators are applied to form the next generation. Experi-
ments with several continuous optimisation functions showed that the proposed
approach has higher evolvability (and consequentially achieves better solutions)
than standard GA.

Hu in [8], proposed a new measurement for evolvability called “rate of genetic
substitutions”. This measurement method was used to investigate the effects of
four major configuration parameters in EC (namely, mutation rate, crossover
rate, tournament selection size, and population size) to show the effectiveness
of these parameters with respect to evolution acceleration. In his work, Hu has
developed a new indicator based on this proposed measurement for adjusting
population size dynamically during evolution.

2.2 Bayesian Models for GP

Bayesian probability model is an interpretation of the concept of probability
and belongs to the category of evidential probabilities. To evaluate a hypothesis’
probability, the Bayesian probability model needs to specify a prior distribution
of probabilities (i.e., training data), which can then be updated in the light of
new relevant data. Relatively few works in the literature have used Bayesian
probability model to enhance GP process.

Zhang [16, 17] proposed a Bayesian framework for GP based on the Bayesian
approach in which, under GP, individuals are viewed as models of the fitness
data. Bayes theorem is used to estimate the posterior probabilities of programs
based on their prior probabilities and likelihood of fitness in observed cases. Off-
spring programs are then generated by sampling from the posterior distribution
by using genetic operators. This work presented two methods for Bayesian GP: 1)
GP with the adaptive Occam’s razor designed to evolve parsimonious program,
and 2) GP with incremental data inheritance designed to accelerate evolution by
active selection of training cases. All these methods are implemented as adaptive
fitness functions that take into account the dynamics of evolutionary processes.

4 A. Kattan and Y. Ong

Yanai and Iba [15] proposed Estimation of Distribution Programming (EDP)
based on GP extension. In their work, a probability distribution expression using
a Bayesian network was used to generate individuals instead of standard search
operators and the Bayesian network described the dependency relationship of
probabilistic nodes. Truncation selection selects the individuals with the top
fitness, analyses their structure, and estimates the probability distribution of
these superior individuals is estimated. Later, Hasegawa and Iba [7] introduced
a new tree-like program evolution algorithm employing a Bayesian network for
generating new individuals. It employs a special chromosome called the expanded
parse tree, which significantly reduces the size of the conditional probability
table.

As can be seen, most previous works used a Bayesian model or Bayesian
network as a method to create individuals, in a similar manner to Estimated
Distribution Algorithms (EDA). In this paper, we utilise the Bayesian model to
enhance the GP evolutionary process in a novel way that, to the best of our
knowledge, has never been proposed before. To this end, Bayesian rule is used to
prevent premature convergence that could occur in the canonical GP iteration
process. Further details of this process are provided in Section 3.

3 Recurrent Bayesian Genetic Programming

Generally, premature convergence occur because selection pressure may encour-
ages dense congregations of homogeneous solutions, a key characteristic of pre-
mature convergence [10]. It is reasonable to hypothesise that mature conver-
gence is inhibited by the loss of potentially useful genetic material due to the
replacement strategies undertaken by search operators wherein worst individuals
are replaced by new offspring. This dynamic may allow some individuals, that
seems potential, to exist for multiple evolutionary cycles within the population
and may hinder the exploration of superior areas in the search space. rbGP
techniques aim to reduce premature convergence by ranking individuals in the
population based on their level of evolvability relative to the performance of the
whole population.

The process adopted by rbGP is broadly outlined in figure 1. Similar to
standard GP, rbGP starts by randomly initialising a population P0, where the
number of generations is i = {0, ..., n}, and calculates their fitness values using
the given fitness measure. However, unlike standard GP, instead of driving the
population to generate the next generation, rbGP generates an intermediate pop-
ulation P̂i to collect observations about the population’s performance. To this
end, rbGP applies standard tournament selection to identify potential individu-
als where it forces each individual to generate k number of offspring to constitute
P̂i (i.e., the intermediate population). Hence, the size of the P̂i = k × size(Pi).
rbGP uses standard tournament selection to select the parents of the individu-
als in P̂i. Naturally, some individuals in Pi might never be selected while other
individuals might be selected more than once. During the creation process of
P̂i, rbGP notes the number of successful and unsuccessful offspring generated
by each selected individual participated in P̂i. By ‘successful’ offspring we mean
the ones that their fitness values are better than their parents while ‘unsuc-
cessful’ means the opposite. Using the collected observations, rbGP builds two
sets for the population Pi. First, numbers of successful offspring and second,
numbers of failure offspring. Let the set of successful offspring for Pi be rep-
resented as Ds(Pi) = {|os

0|, |os
1|, ..., |os

m|} where |os
j | is the number of successful

Bayesian Inference to Sustain Evolvability in Genetic Programming 5

offspring generated by the jth individual participated in generating P̂i and m is
the population size. In addition, let the set of failure offspring of Pi be denoted
as Df (Pi) = {|of

0 |, |o
f
1 |, ..., |of

m|} where |of
j | is the number of failure offspring

generated by the jth selected individual from Pi. Note that both sets Ds(Pi)
and Df (Pi) are built using information from the selected individuals from Pi

and those individuals that never selected will be ignored from both sets. The
sets Ds(Pi) and Df (Pi) can represent the convergence state of the population
Pi. Hence, naturally, a high mean of Ds(Pi) and a low mean of Df (Pi) may
indicate that the individuals in Pi are scattered in the search space and that the
population remains far from the global optimum. A low mean of Ds(Pi) and a
high mean of Df (Pi) though, might indicate the opposite, that Pi individuals are
already approaching optimum solutions (perhaps a local optimum), and thus, it
is difficult to find further superior offspring.

Genera&on	 Pi	 Genera&on	 ‘Pi	

Genera&on	 Pi+1	

1-‐	 Generate	
intermediate	
popula&on	

2-‐	 Readjust	 selected	 parents’	
fitness	 based	 on	 Bayesian	 rule	

Fig 1. rbGP process outline

Using a Bayesian model, rbGP analyses the probability of evolvability (i.e.,
probability of success) for each individual participated in constitution of the
intermediate population based on their number of successful offspring versus
their number of failure offspring relative to the whole population and ranks
them accordingly. This ranking process is calculated as following:

P (If
j |Pif) =

P (Pif |If
j)P (If

j)

P (Pif |If
j)P (If

j) + P (Pis|Is
j)P (Is

j)
(1)

where P (If
j) is the probability of the jth individual to produce inferior offspring.

This variable is calculated as
|ofj |

|ofj |+|osj |
. The term P (Pif |If

j) refers to the likeli-

hood of individual Ij produce inferior offspring given Pif (i.e., Pif refer to the
probability of the whole population Pi to produce inferior offspring). The term
P (Is

j) refer to the probability of the individual Ij producing better offspring.

The P (Is
j) variable can be calculated as |osj |

|ofj |+|osj |
. Finally, P (Pis|Is

j) is the like-

6 A. Kattan and Y. Ong

lihood of individual Ij produce better offspring given Pis (i.e., Pis refer to the
probability of population Pi producing better offspring).

We assumed that the set Df (Pi) have a Gaussian distribution and that the
likelihood is calculated as follows:

P (Pif |If
j) =

1√
2πσf

e
(|of
j
|−µf)2

2σf (2)

where µf and σf denote the mean and variance of Df (Pi), respectively. Also,
the likelihood of P (Pif |If

j) in Ds(Pi) is calculated in similar manner.

P (Pis|Is
j) =

1√
2πσs

e
(|osj |−µs)

2

2σs (3)

where µs and σs denote the mean and variance of Ds(Pi), respectively. Now,
according to Equation 1, individuals are ranked based on their probability of
evolvability in relation to the whole population. Individuals that have a higher
potential evolvability level than the whole population receive lower ranks. To this
end, rbGP readjusts individuals’ fitness values according to their probability of
evolvability relative to the whole population and their fitness values as:

Rank(Ij) = P (If
j |Pif)× fitness(Ij) (4)

Individuals that have been ignored by the selection process during generating
the intermediate population will automatically receive rank of 0. This is because
the system has no information about their level of evolvability.

The main disadvantage of rbGP is that it requires to produce several offspring
for each selected parent when generating the intermediate generation (in our case
it is 100 offspring) in order to constitute meaningful distributions for Df (Pi)
and Ds(Pi) which may be computationally expensive. However, as we will see in
the experiments in Section 5, rbGP managed to evolve good solutions in small
number of generations.

3.1 Elitism

The ranking process, described in Equation 4, could underestimate some poten-
tial solutions, that appear in early stages of the search, and assign them lower
ranks, which will reduce their chances of participating in Pi+1, thus hindering
progress of the search. Therefore, rbGP copies the best individual from Pi to
Pi+1 to preserve potentially useful genetic material from being lost.

In addition, as illustrated in figure 1, rbGP copies the best individuals from
P̂i to Pi+1. The logic for this is that rbGP has already devoted considerable
computational efforts to generate the intermediate population (P̂i) and it is
reasonable to utilise this efforts in the search process.

4 Experimental Setup

Experiments have been devised to compare the proposed rbGP model against
standard GP. The main aim of the experiments is to evaluate the performance
of the rbGP and to assess the algorithms behaviour under a variety of circum-
stances. Our experimental study included 15 problems, 12 symbolic regression

Bayesian Inference to Sustain Evolvability in Genetic Programming 7

problems and 3 time-series problems. The symbolic regression covered a variety
of functions: polynomial, trigonometric, logarithmic and square-root and com-
plex functions. These functions selected because they represent different land-
scapes. Thus we stress rbGP under different search conditions. For each sym-
bolic regression problem, we uniformly sampled 200 data points from the interval
[−5, 5]. These points were divided into 50 for training, 50 for validation, and 100
for testing. Table 1 shows the problems included in our experimental study. GP
evolved solutions to minimise the average absolute error on the training set. The
best individual in each generation is further tested on the validation set and the
best individual across the whole run (i.e., the one with best performance on the
validation set) is tested with the testing set.

For the real-world time-series problem, we used data from Google Trends
service [6], a free service offering data about the search terms that people enter
into Google’s search engine. The service provides free downloadable historical
time-series data about any keyword. It, also, offers the flexibility to restrict the
search by country. One use of Google Trends is for E-Marketing managers to
monitor how often people type certain keywords related to their products at
different times of the year. Using this information, E-Marketing managers can
determine the best time to release their marketing campaigns so their adver-
tisements coincide with peoples searches and eventually achieve higher hit rates.
For the purpose of our experiments, we imported time-series data about searches
for the following keywords; Jobs, Holidays, and Cinema and we restricted the
search to get data from USA, USA and UK, respectively. All the imported data
from Google Trends represent the weekly frequencies of these keywords between
January 2004 and May 2013. The data yielded 490 data points. We used a sliding
window of size 5 to capture the average values of 5 consecutive weeks, which was
input to GP in order to predict the value of the next week. GP received inputs
of averages for weeks wi : wi+5 where i = {1...490} and the expected output is
the value of point in location wi+6. Data were divided into 50% Training, 20%
Validation, and 30% Testing sets. Here, the aim is to predict the frequency of
keywords searches (treating the testing set as unseen weekly observations in the
future) so as to help employers to select the best time to advertise their new
jobs, travel agencies to predict the best time to release holidays packages, and
media companies to preview new shows at the most appropriate time.

We compared rbGP against standard GP (SGP). Both systems received ex-
actly the same settings and the same number of evaluations, to ensure fair com-
parison, as illustrated in table 2. In our experiments, we considered the number
of consumed evaluations in the intermediate generations in rbGP and allocated
exactly the same evaluation budget to SGP. To this end, rbGP was set to search
the search space using 50 individuals. For each selected individual, rbGP gener-
ates 100 different offspring to constitute the intermediate generation. SGP was
set to search the search space using 5050 individuals. Thus, received exactly the
same search budget as rbGP. For every problem, we tested each system through
50 independent runs.

8 A. Kattan and Y. Ong

Table 1. Test problems included in the experimental study.

Problem Notation Type Variables
F0 f(x) = 5x3 + 2x2 + x+ 5 Polynomial 1
F1 f(x) = 5x2 + 2x2 + x Polynomial 1
F2 f(x) = tan(x) + sin(x) Trigonometric 1
F3 f(x) = 5

√
(|x|) Square root 1

F4 f(x) = 1− log(x2 + x+ 1) Logarithmic 1
F5 f(x) = 1

100+log(x2)+
√

|x|
Logarithmic 1

F6 f(x) = log(x3) Logarithmic 1
F7 f(x, y) = sin(atan(y, x)

√
x2 + y2 × 6π) Complex 2

F8 f(x) = 5x4 + 5x3 + 2x2 + x+ 5 Polynomial 1
F9 f(x, y) = (1.5 − x + xy)2 + (2, 25 − x +

xy2)2 + (2.625− x+ xy3)2
Complex 2

F10 f(xn) = 10×
∑i=1

n xi
2 − 10× cos(2πxi) Complex 5

F11 f(xn) = 10×
∑i=1

n xi
2 − 10× cos(2πxi) Complex 10

F12 Time-Series, Google Trends (Jobs, USA) Prediction 490
F13 Time-Series, Google Trends (Holi-

days,USA)
Prediction 490

F14 Time-Series, Google Trends (Cinema,
UK)

Prediction 490

5 Results

Tables 3, 4 and 5 summarise 1500 independent runs. As stated, for each problem,
we tested and compared each system in 50 independent runs and report the mean
and median of the best evolved solutions by each system. In addition, we report
the best solution found by each system across the whole 50 runs. As can be
seen, for the symbolic regression problems, rbGP achieved the best mean and
median in 7 problems and the best solution in 8 problems. Both rbGP and
SGP almost have similar performance in problem F7. We observed that in the
cases that rbGP outperforms its competitor, it finds solutions better than SGP
at margins varying from 0.02% to 54%. Note that results are obtained from the
performance of the best tree on an unseen testing set to reflect the generalisation
ability of each system. To further verify the statistical significance of our results,
a Kolmogorov-Smirnov two-sample test [11] has been performed. Table 6 reports
the P-value for the tests. In all cases where rbGP achieved better results, P-value
is statistically significantly superior to SGP at the standard 95% significance
level. Interestingly, the P-value also show a statistical significance in the three
problems where rbGP was outperformed by SGP (namely, F2, F10, and F11).
The only two cases that P-Value shows statistical significance below 95% is in
problems F6 and F7.

For the time-series prediction problems, rbGP served best as measured by
mean and median in 2 out of 3 problems and achieved the best solution in only
one problem. rbGP’s improvement margins varying from 0.02% to 6% and the
loss margins from 0.04% to 0.007%. Generally, both SGP and rbGP achieved
almost equal performance on the three time-series prediction problems.

Bayesian Inference to Sustain Evolvability in Genetic Programming 9

Table 2. Parametric settings of the algorithms considered in the experiments.

Parameter Standard GP Setting
Sub-tree Mutation 70%
Sub-tree Crossover 30%
Tournament size 2
Population Size 5050

Generations 20
Elitism 2%

Parameter rbGP Settings
Sub-tree Mutation 70%
Sub-tree Crossover 30%
Tournament size 2
Population Size 50

Intermediate Population Size 5000 (100 offspring for each parent)

Generations 20
Elitism (P̂i) 1%
Elitism (Pi) 1%

5.1 Discussion

The results are encouraging in the sense that rbGP is already doing well com-
pared to SGP and it is not too far behind in the cases that it loses the com-
pression. We believe rbGP still has room for further improvements. Apart from
rbGP’s good generalisation ability, we noted that rbGP is outperforming SGP in
all the experiments on the training cases. Naturally, the performance on unseen
testing data is much more important than the performance on any given train-
ing set. However, it should be noted that despite being competitive on unseen
testing sets, rbGP shows remarkable resistance to the over-fitting problem.

Surprisingly, we observed that rbGP produces larger trees, in some cases,
than SGP. This is interesting because rbGP effectively explores the search space
using 50 individuals while using the intermediate generation as indicator re-rank
individuals based on their level of evolvaiblity (as described in Section 3) while
SGP explores the search space using 5050 individuals (the same exploration
budged allocated to rbGP). Therefore, it is natural to assume that SGP’s pop-
ulation will bloat faster. However, as the demonstrated by the experiments, this
is not the case. We believe that rbGP bloat at faster rate than its competitor for
two reasons. The first reason, as stated in Section 3.1, is because rbGP copies the
best individuals from the intermediate generation P̂i to Pi+1. This can acceler-
ate the bloat. The second reason is that the whole process undertaken by rbGP
ensures to enhance the evolvability. The fitness improvement, generally, occur
across the whole population. This is further confirmed in figure 2 where the fit-
ness distribution of both rbGP and SGP for problem F0 is visualised. The figure
shows the fitness values of the selected parents against the fitness values of their
offspring and the frequency of their occurrence in the search process, accumu-
lated from 50 runs. For SGP (on the left side of the figure), the figure shows that
SGP’s search, generally, dominated by poor parents that produce poor offspring
and then some parents produce good offspring which make the search converges
toward an optimum. In SGP most of the search budget is wasted in areas where
poor parents produce poor offspring. However, in rbGP (on the right side of

10 A. Kattan and Y. Ong

Table 3. Summary results of 600 in-
dependent runs (for problems F0 -
F5). Results are sampled from 50 in-
dependent runs form each system in
each problem.

F0
Mean Median Best

rbGP 12.558 5.252 0.469
GP 22.628 16.985 3.533

F1
Mean Median Best

rbGP 1.254 3.342E-01 4.586E-05
GP 1.882 1.900E+00 0.318

F2
Mean Median Best

rbGP 2.532 6.693E-01 0.001
GP 1.748 6.374E-01 0.001

F3
Mean Median Best

rbGP 0.009 2.457E-06 8.839E-07
GP 0.020 1.159E-02 6.018E-05

F4
Mean Median Best

rbGP 0.232 0.174 0.052
GP 0.350 0.329 0.159

F5
Mean Median Best

rbGP 0.329 0.309 0.060
GP 0.493 0.482 0.286

*Bold numbers are the lowest.

Table 4. Summary results of 600 inde-
pendent runs (for problems F6 - F11).
Results are sampled from 50 indepen-
dent runs form each system in each
problem.

F6
Mean Median Best

rbGP 0.292 0.289 0.038
GP 0.296 0.292 0.170

F7
Mean Median Best

rbGP 0.866 0.867 0.762
GP 0.868 0.867 0.737

F8
Mean Median Best

rbGP 163.436 48.896 3.898
GP 115.343 111.453 13.628

F9
Mean Median Best

rbGP 53430.451 13927.500 848.112
GP 13706.556 12422.200 4300.640

F10
Mean Median Best

rbGP 30.875 24.376 15.949
GP 21.714 18.614 15.789

F11
Mean Median Best

rbGP 37.730 36.177 26.759
GP 33.159 33.377 25.031

*Bold numbers are the lowest.

the figure) parents that produce good offspring are more and then the whole
population become dominated by good individuals (shown by the large peak on
the figure’s corner). This indicates that most of the allocated search budget was
well utilised and rbGP directed the search effectively. Thanks to the re-ranking
process of parents’ fitness values.

6 Conclusions and Future Work

In this paper, introduced a new framework, referred to as Recurrent Bayesian
Genetic Programming (rbGP), to sustain evovability. rbGP generates an inter-
mediate population to collect statistical observations about the populations per-
formance and incorporate this information into a Bayesian model. The Bayesian
model is trained with the collected observations and used as a method of in-
ference to readjust fitness values of individuals based on their performance and
likelihoods of driving the population into premature convergence.

Bayesian Inference to Sustain Evolvability in Genetic Programming 11

Fig 2. Fitness distribution for problem F0 accumulated from 50 independent
runs. The graph show the fitness values of selected parent against the fitness
values of their offspring and the frequency of their occurrence in the search
process.

To verify the usefulness of rbGP, we conducted an experimental study that
included 15 non-trivial problems. rbGP has been compared against standard
GP. The results were promising in the sense that rbGP outperformed its com-
petitor in most cases and when it lost the comparison it is not too far behind.
Moreover, we believe that rbGP performance can still be improved in future
work. Furthermore, results indicate the Bayesian ranking process make rbGP
remarkably resistance to the over-fitting.

For the future work, one direction is to explore the idea of using a metric that
establishes the best GP trees to breed from in one stage method rather than this
two-stage process. Another direction to explore is eliminating the intermediate
population and allowing the Bayesian model to continuously learn population
distributions as new evidences emerges.

References

1. L. Altenberg. The evolution of evolvability in genetic programming. In K. E.
Kinnear, Jr., editor, Advances in Genetic Programming, chapter 3, pages 47–74.
MIT Press, 1994.

2. J. K. Bassett, M. Coletti, and K. A. De Jong. The relationship between evolv-
ability and bloat. In Proceedings of the 11th Annual conference on Genetic and
evolutionary computation, GECCO ’09, pages 1899–1900, New York, NY, USA,
2009. ACM.

3. E. Ducheyne, B. Baets, and R. Wulf. Is fitness inheritance useful for real-world
applications? In C. Fonseca, P. Fleming, E. Zitzler, L. Thiele, and K. Deb, edi-
tors, Evolutionary Multi-Criterion Optimization, volume 2632 of Lecture Notes in
Computer Science, pages 31–42. Springer Berlin Heidelberg, 2003.

4. A. M. Ellison. Bayesian inference in ecology. Ecology letters, 7(6):509–520, 2004.
5. A. Fakeih and A. Kattan. Recurrent genetic algorithms: Sustaining evolvability. In

J.-K. Hao and M. Middendorf, editors, Evolutionary Computation in Combinatorial
Optimization, volume 7245 of Lecture Notes in Computer Science, pages 230–242.
Springer Berlin Heidelberg, 2012.

6. Google. Google insights, June 2013. http://www.google.com/trends/.
7. Y. Hasegawa and H. Iba. A Bayesian network approach to program generation.

IEEE Transactions on Evolutionary Computation, 12(6):750–764, Dec. 2008.

12 A. Kattan and Y. Ong

Table 5. Summary results of 300 inde-
pendent runs (for problems F12 - F14).
Results are sampled from 50 indepen-
dent runs for each system in each prob-
lem.

Jobs - US
Mean Best Meidean StD

rbGP 1.127 1.102 1.133 0.012
GP 1.133 1.100 1.136 0.011

Holidays - US
Mean Best Meidean StD

rbGP 3.901 3.707 3.908 0.117
GP 3.898 3.808 3.908 0.037

Cinema - UK
Mean Best Meidean StD

rbGP 9.051 8.449 9.039 0.334
GP 9.096 8.632 9.050 0.226

*Bold numbers are the lowest.

Table 6. Summary of
Kolmogorov-Smirnov two-sample
test.

Problem P-Value
F0 2.18E-05
F1 2.59E-08
F2 4.23E-04
F3 7.23E-16
F4 3.63E-06
F5 1.08E-08
F6 0.3584
F7 0.9541
F8 1.39E-08
F9 6.43E-01
F10 1.26E-07
F11 4.89E-05
F12 0.8253
F13 0.0440
F14 0.0440

*Bold numbers are less than 5%.

8. T. Hu. Evolvability and Rate of Evolution in Evolutionary Computation. PhD
thesis, Department of Computer Science, Memorial University of Newfoundland,
ST. John’s, Newfoundland, Canada, May 2010.

9. T. Hu and W. Banzhaf. Evolvability and speed of evolutionary algorithms in light
of recent developments in biology. J. Artif. Evol. App., 2010:1:1–1:28, January
2010.

10. G. P. Murphy. Manipulating Convergence In Evolutionary Systems. PhD thesis,
University of Limerick, Ireland, 19 May 2009.

11. J. A. Peacock. Two-dimensional goodness-of-fit testing in astronomy. Royal As-
tronomical Society, Monthly Notices, 202:615–627, 1983.

12. R. Poli, W. W. B. Langdon, and N. F. McPhee. Field Guide to Genetic Program-
ming. Lulu Enterprises Uk Limited, 2008.

13. R. E. Smith, B. A. Dike, and S. A. Stegmann. Fitness inheritance in genetic
algorithms. In Proceedings of the 1995 ACM symposium on Applied computing,
SAC ’95, pages 345–350, New York, NY, USA, 1995. ACM.

14. Y. Wang and M. Wineberg. The estimation of evolvability genetic algorithm. In
Evolutionary Computation, 2005. The 2005 IEEE Congress on, volume 3, pages
2302 – 2309 Vol. 3, sept. 2005.

15. K. Yanai and H. Iba. Estimation of distribution programming based on bayesian
network. In Evolutionary Computation, 2003. CEC ’03. The 2003 Congress on,
volume 3, pages 1618–1625 Vol.3, 2003.

16. B.-T. Zhang. Bayesian genetic programming. In T. Haynes, W. B. Langdon, U.-
M. O’Reilly, R. Poli, and J. Rosca, editors, Foundations of Genetic Programming,
pages 68–70, Orlando, Florida, USA, 13 July 1999.

17. B.-T. Zhang. Bayesian methods for efficient genetic programming. Genetic Pro-
gramming and Evolvable Machines, 1(3):217–242, July 2000.

