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Abstract. We propose a new framework based on Genetic Programming (GP)
to automatically decompose problems into smaller and simpler tasks. The frame-
work uses GP at two levels. At the top level GP evolves ways of splitting the
fitness cases into subsets. At the lower level GP evolves programs that solve the
fitness cases in each subset. The top level GP programs include two components.
Each component receives a training case as the input. The components’ outputs
act as coordinates to project training examples onto a 2-D Euclidean space. When
an individual is evaluated, K-means clustering is applied to group the fitness cases
of the problem. The number of clusters is decided based on the density of the
projected samples. Each cluster then invokes an independent GP run to solve its
member fitness cases. The fitness of the lower level GP individuals is evaluated as
usual. The fitness of the high-level GP individuals is a combination of the fitness
of the best evolved programs in each of the lower level GP runs. The proposed
framework has been tested on several symbolic regression problems and has been
seen to significantly outperforming standard GP systems.

1 Introduction

Problem decomposition aims to simplify complex real world problems in order to better
cope with them. This strategy is regularly used by humans when solving problems. For
example, computer programmers often organise their code into functions and classes.

Problem decomposition is important for two reasons. Firstly, it reduces the complex-
ity of a problem and, therefore, makes the problem easier to solve by standard machine
learning techniques. Secondly, automated problem decomposition may help researchers
to better understand a problem domain by discovering regularities in the problem space.
One way to formalise the decomposition process is to assume there exist different pat-
terns in the problem space, each pattern has particular characteristics and therefore it
needs a special solution.

Generally, problem decomposition allows a better understanding and control of the
problem’s complexity. However, while it is not difficult to split a problem into sev-
eral sub-problems to be solved in cooperation with different methods, using the wrong
decomposition may actually increase the problems complexity.

An ideal problem decomposition system would be one that gets the data from the
user and identifies different groups in the data; each of these groups should be simpler to
solve than the original problem. An intelligent decomposition of problems requires un-
derstanding the problem domain and usually can only be carried out by experts. In this
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paper, we propose a GP system that can evolve programs that automatically decompose
a problem into a collection of simpler and smaller sub-problems while simultaneously
solving the sub-problems. This is an area of GP that has not been thoroughly explored
thus far.

The structure of the paper is as follows. In the next section we briefly review previ-
ous work on problem decomposition. Section 3 provides a detailed description of our
proposed framework. This is followed by details on our experimental setting and results
in Sections 4 and 5, respectively. Finally, conclusive remarks are given in Section 6.

2 Related Work

The solution to complex problems typically requires the construction of highly com-
plex systems. These systems typically use hierarchical, modular structures to manage
and organise their complexity. Modular structures are widespread in engineering and
nature. So, it is reasonable to expect that they could be valuable in GP as well. In
particular, modularity and hierarchy can be essential tools for problem decomposition.
Consequently, starting from Koza’s automatically defined functions (ADFs) [1], they
have been a subject of substantial empirical exploration from the early days of GP (e.g.,
see [2,3,4,5,6,7,8]). Due to space limitations, in this section we will review problem
decomposition approaches that are based on the notion of dividing up the test cases into
(possibly overlapping) subsets, since these are directly relevant to the work reported in
this paper.

Rosca et al. [9] proposed a system called Evolutionary Speciation Genetic Program-
ming (ESGP) to automatically discover natural decompositions of problems. Each in-
dividual consisted of two parts: condition and output. The condition element represents
a Boolean function that receives a fitness case presented as an argument and returns
feedback on whether the individual chooses to specialise in that case. The output ele-
ment is a standard GP tree, which receives the chosen fitness cases as input. Naturally,
some of the fitness cases may be claimed by more than one individual while others are
never chosen. Thus, a fitness function was proposed which encourages individuals to
fully cover the problem space and minimise the overlap of the claimed fitness cases.
The approach was tested with symbolic regression problem and compared with stan-
dard GP and with GP(IF), which additionally includes if-then-else in the function set.
GP(IF) is selected as it may implicitly split the problem space into different regions.
Indeed, experimentation revealed that GP(IF) evolved conditions in such a way as to
effectively assign different fitness cases to different pieces of code and, moreover, that
GP(IF) outperformed ESGP.

Iba [10] proposed to extend GP using two well-known resampling techniques known
as Bagging and Boosting and presented two systems referred to as BagGP and BoostGP.
In these systems the whole population is divided into subpopulations. Each subpopula-
tion is evolved independently using a fitness function based on a subset of the fitness
cases, which are allocated by the two resampling techniques, i.e., Bagging and Boost-
ing. Later, the best individual from each subpopulation is selected to form a voting
scheme to classify unseen data. In both BagGP and BoostGP the number of subpopu-
lations is determined by the user. Experiments on three benchmark problems showed
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that BagGP and BoostGP outperformed conventional GP. However, when BagGP and
BoostGP were applied to a complex real world problem– the prediction of the Japanese
stock market– they performed almost identically to standard GP.

More recently, Jackson [11] proposed a hierarchical architecture for GP for prob-
lem decomposition based on partitioning the input test cases into subsets. The approach
requires a manual partitioning of the test cases. Then, each subset is independently pro-
cessed in separate evolved branches rooted at a selection node. This node decides which
branch to activate based on the given input case. The branches are evolved in isolation
and do not interact with each other. The number of branches is determined by the num-
ber of subsets into which the test cases have been divided. The proposed architecture
has been tested with the 4-, 5- and 10-even-parity problems and polynomial symbolic
regression problems with different numbers of branches. In addition, comparisons with
standard GP and GP with ADFs have been performed. Experiments showed that this
architecture has outperformed conventional GP systems. Its main disadvantage is that
the user is required to manually decompose the test cases.

As one can see, none of the previous methods for problem decomposition via test
case subdivision is fully automated. Overcoming this limitation is one of the aims of
the work presented in this paper.

3 The Approach

Our problem decomposition system works in two main stages: i) Training, where the
system learns to divide the training cases into different groups based on their similarity
and ii) Testing, where the system applies what it has learnt to solve unseen data. The
training phase is divided into two main steps i) resampling, where the system tries to
discover the best decomposition for the problem space and ii) solving, where the system
tries to solve the problem by solving the sub-problems discovered in the resampling
stage independently.

In the resampling stage, the system starts by randomly initialising a population of
individuals using the ramped half-and-half method (e.g., see [12]). Each individual is
composed of two trees: projector X and projector Y. Each tree receives a fitness case
as input and returns a single value as output. The two outputs together are treated as
coordinates for a fitness case in a 2-D plane. The process of mapping fitness cases to
2-D points is repeated for all the training examples. For this task, GP has been supplied
with a language which allows the discovery of different patterns in the training set.
Table 1 reports the primitive set of the system.

Once the training cases are projected via the two components (projector X and Y), K-
means clustering is applied in order to group similar instances in different clusters. Each
cluster then invokes an independent GP run to solve cases within its members. Thus,
each cluster is treated as an independent problem. The next subsection will describe the
clustering process in detail.

3.1 Clustering the Training Examples

We used a standard pattern classification approach on the outputs produced by the two
projection trees to discover regularities in the training data. In principle, any classification
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Table 1. Primitives set

Function Arity Input Output

+/, -, /, *, pow 2 Real Number Real Number
Sin, Cos, Sqrt, log 1 Real Number Real Number

Constants 1-6 0 N/A Real Number
X 0 N/A Real Number

method can be used with our approach. Here, we decided to use K-means clustering
(e.g., see [13]) to organise the training data (as re-represented by their two projection
trees) into groups. With this algorithm, objects within a cluster are similar to each other
but dissimilar from objects in other clusters. The advantage of this approach is that the
experimenter doesn’t need to split the training set manually. Also, the approach does not
impose any significant constrains on the shape or size of the clusters. Once the training
set is clustered, we can use the clusters found by K-means to perform classification of
unseen data by simply assigning a new data point to the cluster whose centroid is closest
to it.

K-means is a partitioning algorithm that normally requires the user to fix the number
of clusters to be formed. However, in our case the optimal number of subdivisions for
the problem into sub-problems is unknown. Hence, we use a simple technique to find
the optimal number of classes in the projected space based on the density of the samples.
Once the system groups the projected samples into classes, it invokes an independent
GP search for each cluster.

Since K-means is a very fast algorithm, to find the optimal number of clusters the
system repeatedly instructs K-means to divide the data set into k clusters, where k =
2,3, ...Kmax (Kmax = 10, in our implementation). After each call the system computes
the clusters’ quality. The value of k which provided the best quality clusters is then
used to split the training set and invoke GP runs on the corresponding clusters.

The quality of the clusters is calculated by measuring cluster separation and repre-
sentativeness. Ideal clusters are those that are separated from each other and densely
grouped near their centroids.

A modified Davis Bouldin Index (DBI) [14] was used to measure cluster separation.
DBI is a measure of the nearness of the clusters’ members to their centroids, divided
by the distance between clusters’ centroids. Thus, a small DBI index indicates well
separated and grouped clusters. Therefore, we favour clusters with a low DBI value.

DBI can be expressed as follows. Let Ci be the centroid of the ith cluster and dn
i the

nth data member of the ith cluster. In addition, let the Euclidean distance between dn
i

and Ci be expressed by the function dis(dn
i , Ci). Furthermore, let again k be the total

number of clusters. Finally, let the standard deviation be denoted as std(). Then,

DBI =
∑k

i=0 std[dis(d0
i ,Ci), ...,dis(dn

i ,Ci)]
dis(C0,C1, ...,Ck)

The representativeness of clusters is simply evaluated by verifying whether the formed
clusters are representative enough to classify unseen data. In certain conditions, the
projection trees may project the data in such a way that it is unlikely to be suitable
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to classify unseen data. For example, clusters that have few members are unlikely to
be representative of unseen data. To avoid pathologies of this kind, the system verifies
whether the formed clusters have a sufficiently large number of members. In particular,
it penalises the values of k that lead K-mean to form clusters where less than a minimum
number of members is present. In this work, the minimum allowed number of members
for each cluster was simply set to 10 samples. However, we have not thoroughly in-
vestigated whether this was optimal in all conditions. For example, it is likely that the
optimum minimum size of the clusters is modulated by the total number of training
examples available.

More formally, the quality, Qk, of the clusters obtained when K-means is required to
produce k clusters can be expressed as the follows. Let θk be the penalty value applied
to the quality if there is a problem with the representativeness of the clusters produced.
If any particular cluster has less than a minimum number of members we set θk = 1000,
while θk = 0 if no problem is found. Furthermore, let DBIk represent the corresponding
cluster separation. Then,

Qk = DBIk + θk

After running K-means for all values of k in the range 2 to Kmax, we choose the optimal
k as follows:

kbest = arg min
2<k<Kmax

Qk

The main factor that affects the optimal number of clusters is the density of the projected
samples. The method described above effectively analyses the density of the data from
this point of view. Algorithm 1, describes the clustering process in details.

A disadvantage of this approach is that the K-means algorithm has to be executed
several times per fitness evaluation, which slows down the evolution a little. However,
this only needs to be done during evolution. During normal operation we simply apply
the previously formed clusters (represented by their centroids) to the unseen data.

As mentioned previously, once the system has identified the optimal k value and
the corresponding clusters, it invokes an independent GP search for each cluster. The
purpose is to evolve a program that satisfies the fitness cases in the cluster. In the testing
phase, unseen data go through the two projector components of the evolved solution
and are projected onto a two-dimensional Euclidean space. Then, they are classified
based on the closest centroid. Finally, the input data are passed to the evolved program
associated to the corresponding cluster.

The advantage of this approach is that it greatly simplifies classification. This is
because evolution pushes projection trees to represent the data in such a way as to
optimise the performance of the classification algorithm. Here, we used K-means for its
simplicity of implementation and its execution speed, but other techniques might work
equally well.

3.2 Search Operators

We used tournament selection and the standard genetic operators: sub-tree crossover,
sub-tree mutation and reproduction. Naturally, in the top-level GP runs, the genetic
operators have to take the multi-tree representation of individuals into account.
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Project(n, treeX, treeY);
List Qk;
for int k=2; k ≤ KMAX; k++ do

//call the K-means algorithm
K-means(k, n);
int separation = calculate DBI();
if check clusters representativeness() == true then

theta = 0
else

theta = 1000
end
Qk.append(separation + theta, k)

end
//find the best number of clusters
int number of clusters = Qk.get min k();

Algorithm 1. Finding the optimal number of clusters in the projected space

There are several options for applying genetic operators to a multi-tree representation:
apply an operator to all trees within an individual, use different operators for different
trees, constrain crossover to happen only between trees at the same position in the par-
ents, allow crossover between different trees within the representation, and so on.

It is unclear what technique is best (e.g., see [15] and [16]). So, in preliminary exper-
iments we tried a variety of approaches and found that a good way to guide evolution in
our system is to allow crossover to freely pick feature-extractions trees. In other words,
the projector X tree of one parent can be crossed over with either the projector X tree
or projector Y of the other parent and vice versa.

3.3 Fitness Evaluation

We evaluate the top-level GP system’s individuals (represented by two projection trees)
by measuring how well the whole problem is solved. The clusters formed by K-means
represent subsets of training examples. Each cluster invokes a GP search to solve its
member’s cases. We call this inner GP search. For simplicity, each inner GP runs for
a small fixed number of generations with a fixed population size. In future research we
will study the benefits and drawbacks of letting the system decide the settings of each
inner GP run (e.g., based on the size of the associated cluster).

In our system all inner GP systems evolve simultaneously. The fitness of a top-level
GP individual depends on the fitness of the best evolved individual in each of the inner
GP runs. If kbest is the number of clusters found on the projected space using Algo-
rithm 1 and fi is the fitness of the best evolved program in the ith inner GP run, then the
fitness of top-level individuals is:

f =
1

kbest

kbest

∑
i=1

fi.
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This fitness function encourages the individuals to project the fitness cases in such a
way that a solution for the fitness cases in each group can easily be found by the inner
GP runs.

4 Experimental Setup

Experiments have been conducted to evaluate the proposed framework. To do this we
chose a variety of symbolic regression problems, which we felt were difficult enough
to demonstrate the characteristics and benefits of the method.

We used discontinuous functions as symbolic regression target functions. These al-
low us to study the ability of the system to decompose a complex problem into simpler
tasks. Table 2 list the functions as well as the ranges from which we drew samples to
create symbolic regression test problems. Function 1 was used in Rosca’s experiments
in [9] to evaluate his proposed system. Here, we used the same function to ease the
comparison against Rosca’s system.

In order to evaluate our results, a comparison has been conducted against both canon-
ical GP and GP(IF), where we added an IF-THEN-ELSE primitive to the function set.
This primitive has four types of conditions, namely, <, >, >= and <=. The function

Table 2. Test functions
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receives four arguments: the first two are passed to the condition, while the other two
represent code to be executed if the condition is true or false, respectively. GP(IF) was
selected because, as seen in Rosca’s work, it may implicitly split the problem space
into different pieces of code and it is, therefore, likely to be competitive for symbolic
regression with discontinuous functions.

Our experiments were conducted using the parameter settings in Table 3. The prim-
itive set for both Standard GP and GP(IF) was the same as for our GP system (see
Table 1).

Performance has been measured through 100 independent runs for each system (20
runs for each test function). For the training, 100 samples were uniformly selected from
the training interval (see Table 2). Evolved solutions were then evaluated using 400 dif-
ferent samples. Each evolved solution has been evaluated with two different test sets.
Firstly, we tested performance of the solutions within the training interval (interpo-
lation). Secondly, we evaluated performance on a bigger interval (extrapolation). The
extrapolation interval for all test functions was the interval [−5,5], except for function
5 where we used the interval [−7,7].

The fitness measurement for GP, GP(IF) and the inner GP runs in our system is
the mean absolute error over all training samples. For the top-level GP runs in our
system, however, the fitness evaluation described in Section 3.3 has been applied, which
averages over the contribution of each cluster in solving the overall problem.

Table 3. Parameters setting

Method GP Cluster GP Cluster (inner GP) GP(IF) Standard GP

Generations 10 30 30 30
Population 10 100 1000 1000
Crossover 90% 90% 90% 90%
Mutation 5% 5% 5% 5%

Reproduction 5% 5% 5% 5%
Tournament size 2 10 10 10

5 Experimental Results

Table 4 reports the results of the experiments for all five test functions and for stan-
dard GP, GP(IF) and our system (GP Cluster). In addition, the average error obtained
across 20 independent runs is reported in Table 2, in order to provide information on
the stability of each system. Test functions report the best and worst interpolation and
extrapolation achieved by each system in all runs and the standard deviation for all runs.

It is clear that our approach has outperformed standard GP by a significant margin in
all test functions. It also outperformed GP(IF) in four out of five problems. Furthermore,
in all cases standard deviations for Cluster GP were very small, indicating the reliability
of the approach. This is the result of the system splitting the relatively complex shape
of these discontinuous functions into simpler fragments (i.e., sub-problems). Looking
at the number subsets used throughout the test runs, we see that in functions 1, 2 and
5, the system decided to split the training samples into 4 to 10 clusters. In function 3,
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Table 4. Experimental results. Statistics are based on 20 independent runs for each function.

*Numbers in bold represent the best achieved result.

the system identified 6 to 10 clusters in the problem space and in function 4, the most
complex in our test set, it identified 8 to 10 clusters.

As we mentioned before, function 1 has been used in Rosca’s experiments in [9].
The best achieved accuracy reported on the interval [-2,2] was 1.5, while in our system
we have a best interpolation error of 0.15.

We summarise the results from Table 4 in Table 5. As one can see our approach
comes on the top of the comparison. Moreover, our results also show that GP(IF) is a
marginal second, while standard GP comes last.
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Table 5. Experimental results summary

Method GP(IF) Standard GP GP Cluster

Worst interpolation Avg. 75.14 54.01 17.53
Best interpolation Avg. 0.26 1.15 0.08

Worst extrapolation Avg. 1.1912E+289 1.465E+299 9921.70
Best extrapolation Avg. 5.20 5.37 3.48

Average of Averages 8.32 6.57 1.55
Std Avg. 19.78 11.57 3.87

Table 6. A Kolmogorov-Smirnov test

Function Method Standard GP GP Cluster

1 GP(IF) 0.001 / 0 0 / 0.275
Standard GP N/A 0 / 0

2 GP(IF) 0 / 0.023 0 / 0.771
Standard GP N/A 0 / 0.001

3 GP(IF) 0.135 / 0.008 0 / 0.003
Standard GP N/A 0 / 0.003

4 GP(IF) 0.135/ 0.008 0 / 0.275
Standard GP N/A 0/ 0.135

5 GP(IF) 0 / 0965 0.059 / 0.275
Standard GP N/A 0.023 / 0.135

*The results in the table is the P value for Interpolation / Extrapolation

In order to evaluate the statistical significance of our results, a Kolmogorov-Smirnov
two-sample test [17] has been performed on the test-case results produced by the best
evolved system in each run for all pairs of systems under test and for all five test func-
tions. The test has been repeated for both interpolation and extrapolation. Table 6 reports
the P value for the tests. As one can see in 9 out of 10 interpolation cases our system
is statistically significantly superior to both standard GP and GP(IF) at the standard 5%
significance level. The superior performance of GP(IF) on function 5 observed in Ta-
ble 4 is not statistically significant (albeit by a very small margin). In the extrapolation
results (which are, rather obviously, affected by a much larger variance) our system is
statistically significantly superior to the others in 4 out of 10 cases, although as one
can infer from Table 5, one might expect that performing more runs would eventually
statistically confirm the superiority of our system in more cases.

6 Conclusions

In this paper we presented a new framework to automatically decompose difficult sym-
bolic regression tasks into smaller and simpler tasks. The proposed approach is based
on the idea of first projecting the training cases onto a two-dimensional Euclidian space
via two evolved projection programs, and then clustering them via the K-means algo-
rithm to better see their similarities and differences. The clustering is guaranteed to be
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optimal thanks to the use of an iterative process. This process uses a quality measure
based on the density of the projected samples. Once the data are clustered, they are
passed to separate GP runs which evolve specialised solutions for them. Note that while
the projection and clustering steps may seem excessive for scalar domains, they make
our problem decomposition technique applicable to much more complex domains.

Experiments have been conducted with symbolic regression problems using five dif-
ferent discontinuous functions as target functions. The proposed approach has outper-
formed conventional GP systems significantly. Also, experiments showed a remarkable
stability for our system across runs.

The main motivation behind this research was to produce an intelligent system that is
able to solve complex problems by automatically decomposing the problem space into
different classes and thereafter solve each class separately in order to solve the whole
problem in cooperation. We feel that we have achieved our aim within the specific
domain of input space decomposition, as shown by our experimentation. Of course,
there are many other ways of performing problem decomposition and modularisation
as mentioned in Section 2. We hope to be able to extend our clustering idea to other
forms of decomposition.

This research can be extended in many different ways. In the future we will
extend the experimentation by testing the technique on multi-varied problems and non-
symbolic-regression problems. In addition, we will investigate the benefits and draw-
backs of alternative fitness functions (particularly for the top-level GP system). For
example, the fitness function might take the size of the identified clusters into consid-
eration. Moreover, the system should be able to change the settings of each inner GP
run according to the difficulty of the given sub-problem. Further, we intend to investi-
gate the relationship between the identified number of clusters and how this affects the
solutions’ accuracy.
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