
Speaker Verification on Unbalanced Data with

Genetic Programming

Róiśın Loughran, Alexandros Agapitos, Ahmed Kattan*, Anthony Brabazon
and Michael O’Neill

Natural Computing Research and Applications Group
University College Dublin, Ireland

*Computer Science Department, Um Al-Qura University, Saudi Arabia
roisin.loughran@ucd.ie

Abstract. Automatic Speaker Verification (ASV) is a highly unbal-
anced binary classification problem, in which any given speaker must be
verified against everyone else. We apply Genetic programming (GP) to
this problem with the aim of both prediction and inference. We examine
the generalisation of evolved programs using a variety of fitness functions
and data sampling techniques found in the literature. A significant differ-
ence between train and test performance, which can indicate overfitting,
is found in the evolutionary runs of all to-be-verified speakers. Neverthe-
less, in all speakers, the best test performance attained is always superior
than just merely predicting the majority class. We examine which fea-
tures are used in good-generalising individuals. The findings can inform
future applications of GP or other machine learning techniques to ASV
about the suitability of feature-extraction techniques.
Keywords Speaker Verification, Unbalanced Data, Genetic Program-
ming

1 Introduction

Automatic Speaker Verification (ASV) is the process of accurately verifying that
a speaker is who they claim to be. This is feasible because each individual’s voice
is audibly unique due to physical attributes such as length of vocal tract, size
of larynx etc. along with habitual characteristics such as accent and inflection.
ASV has important applications in the fields of phone banking, shopping and
security systems.

ASV is inherently a highly unbalanced binary-classification problem since it
requires to accurately recognise one speaker from everyone else; the first class
A contains examples from to-be-verified speaker, whereas the second class B
contains examples from the rest of the speakers (i.e. impostors). Class A is the
minority class as it is often represented with a smaller number of training ex-
amples, while class B is the majority class. This imbalance in class distribution
is a significant problem; it introduces a learning bias and often results in classi-
fication models that are not accurate in the cases of the to-be-verified speaker.
In general, in class imbalance problems, the smaller the ratio of minority class

examples to majority class examples, then the stronger this bias becomes and
the harder it is for a classifier to generalise [4].

With the notable exception of [9], ASV is an application area that has re-
ceived little attention from the GP community. This paper reports a preliminary
empirical study that approaches the problem of ASV from the class imbalance
perspective. A number of different fitness functions and training-data sampling
techniques found in the literature are examined for their efficiency to evolve
good-generalising programs. The simulations herein are performed on the TIMIT
corpora [13], a regularly-used dataset for speaker recognition and verification.

Section 2 provides background information on ASV, and on methods for
tackling class imbalance issues in pattern classification algorithms in general and
in GP in particular. Section 3 details the scope of the experiments. Section 4
introduces the TIMIT corpora, presents methods for feature extraction, details
the GP systems under comparison and the setup of the experiments. Section 5
analyses the empirical results, while Section 6 concludes and discusses future
work.

2 Background

The aim of this section is to first provide an overview of traditional classification
models for ASV. It then briefly describes the two main categories of methods
for tackling class imbalance problems. The final part reviews GP work based on
unbalance datasets.

2.1 Automatic speaker verification

Early speaker verification models were based on Vector Quantisations [6]. An-
other prominent classification method for ASV to emerge in the early 1990’s
was based on Gaussian Mixture models [31]. Over the next three decades other
classification techniques were applied to the problem of speaker recognition and
verification, such as Support Vector Machines (SVM) [7], Artificial Neural Net-
works [32], ensemble learning [25], and Genetic Programming [9].

A number of recent studies have focussed on methods to counteract inter-
speaker and inter-session variability by examining channel compensation be-
tween recordings. Such studies have used feature mapping to transform obtained
features into a channel-independent feature-space. Methods such as Joint Factor
Analysis [20], i-vectors [21] and PDLA [10] were used for this purpose. This focus
on channel effects is in part driven by the NIST Speaker Recognition Evalua-
tion 1 which evaluates novel speaker recognition systems on a corpora of phone
recordings.

2.2 Tackling class imbalance

There exist a number of methods for learning good-generalising classifiers for
class imbalance datasets. The taxonomy of these methods mainly consists of

1 http://www.nist.gov/itl/iad/mig/ivec.cfm

two major categories; those of training data sampling and cost-sensitive training.
The work of [4] provides an excellent overview of these methods, with references
from both statistical machine learning and GP. For the sake of completeness we
very briefly introduce the two dominant classes in the following sections.

Training-data sampling. Balancing of training examples can be achieved ei-
ther by over-sampling the minority class or under-sampling the majority class [2].
Synthetic over-sampling and editing have been often shown to be superior to the
sampling techniques described above. Synthetic oversampling of the minority
class creates additional examples by interpolating between several similar ex-
amples [3], while editing removes noisy or atypical examples from the majority
class [23].

Cost-sensitive training. In a classification problem, we are given a training
set of N examples {(xi, yi)}

N
i=1, where x ∈ R

d is a d -dimensional vector of
explanatory variables and y ∈ C = {1, . . . , c} is a discrete response variable,
with joint distribution P (x, y). We seek a function f(x) for predicting y given
the values of x. The loss function L(y, f(x)) for penalising errors in prediction
can be represented by a K × K cost matrix L, where K = card(C). L will
be zero on the diagonal and non-negative elsewhere, where L(k, l) is the price
paid for misclassifying an observation belonging to class Ck as Cl. Most often, in
cases of balanced datasets, a zero-one loss function L(y, f(x)) = I(y 6= f(x)) 2 is
used, where all misclassifications are charged one unit. In the case of unbalanced
datasets, the cost matrix can be adjusted to increase the cost of misclassifying
the examples of the minority class.

2.3 GP on unbalanced datasets

Genetic Programming has been applied to unbalanced datasets in a number of
studies. Work using the data sampling techniques of Random Sampling Selection
(RSS) and Dynamic Subset Selection (DSS) is reported in [8, 14]. In [8] a two-
level sampling approach is first used to sample blocks of training examples using
RSS and then select examples from within those blocks using DSS. In [14] DSS is
used to bias the selection of training examples towards hard-to-classify examples,
while RSS was used to bias towards the selection of minority class training
examples.

Cost adjustment strategies usually focus on adapting the fitness function to
reward programs which have good accuracy on both classes with better fitness,
while penalising those with poor accuracy on one class with low fitness. The use
of different misclassification costs to incorrect class predictions is reported in [18].
In the work of [12] an adaptive fitness function increases misclassification costs
for difficult-to-classify examples. In [33] RSS and DSS are used in conjunction
with three novel fitness functions with an application to a network intrusion

2
I(·) is the indicator function.

detection problem. The work of [29] used both rebalancing of data and cost-
sensitive fitness functions in comparing GP with other data-mining approaches
to predict the rate of student failure in school. The work of [4] used six data
sets with different class imbalance ratios and applied GP with a number of
different fitness functions. A multi-objective GP approach for evolving accurate
and diverse ensembles of GP classifiers that perform well on both minority and
majority classes was proposed in [5]. A weighted average composed of error rate,
mean squared error and a novel measure of class separability similar to Area
Under Curve is used in [34]. In the work of [11], data sub-sampling is used
in combination with the average of the geometric mean between minority and
majority class accuracies and the Wilcoxon-Mann-Whitney statistic.

3 Scope of research

To the best of our knowledge, the application of GP to speaker verification has
only been reported in the work of [9]. One of the principal applications of ASV
systems is remotely confirming the identity of a person for reasons of security
such as telephone banking. The literature review conducted in [9] showed that
while good results have been reported using a variety of different systems of
statistical machine learning on noiseless input signals, most systems suffer heav-
ily if the signal is transmitted over a noisy transmission path (i.e. a telephone
network). In order to create a “noisy” environment, several datasets were de-
rived from the original TIMIT corpora using filters that included both additive
and convolutive noise. GP experiments were then set to evolve classifiers based
on extracted features impaired by noise. Twenty-five speakers to-be-verified and
forty-five “impostors” were selected from the TIMIT corpora. For each of the to-
be-verified speakers the training set consists of fifteen seconds of to-be-verified
speech and forty-five seconds of impostor speech (one second of randomly se-
lected speech from each of the forty-five impostor individuals). This results in a
minority class to majority class imbalance ratio of 1:3. A pool of hand-engineered
features were extracted from the raw signal and populated the terminal set.
The fitness function used was dynamically biased to concentrate on the most
difficult-to-classify examples. Finally, an island model was employed to improve
population diversity. Results showed that generated programs can be evolved
to be resilient to noisy transition paths, which was mainly attributed to the
speaker-dependent and environment-specific feature selection inherent in GP.

In this paper we investigate a different facet of the GP application to ASV.
The research scope is two-fold. First, we study the generalisation of GP-evolved
programs on ASV datasets that exhibit a high class imbalance ratio. Specifically,
the experiments designed are based on datasets with a class imbalance ratio
of 1:9. We used the original, noiseless TIMIT corpora. A number of different
methods for cost-sensitive training and data sampling are compared in terms of
their effectiveness to assist with the evolution of good-generalising programs.

The second aim of this paper is to inform future applications of GP and other
machine learning algorithms to ASV in terms of the usefulness of different fea-

tures for constructing classifiers. For this purpose, we extract 275 features from
the raw signal to create program input, and rely on the inherent ability of GP to
perform feature selection. We analyse the terminal-nodes of highly-performing
programs, and calculate statistics on the frequency of usage of different features.

4 Methods

4.1 Speaker Corpus

The speech recordings used in this study are taken from the TIMIT corpora [13].
This was chosen due its very regular use in the speaker recognition and verifica-
tion literature. The corpora consists of 630 speakers, 192 female and 438 male,
from 8 American dialects each reading 10 phonetically rich sentences. Each sen-
tence was recorded on a high quality microphone at a sampling rate of 16kHz.

4.2 Training and Test data

For these experiments we chose a random 10 speakers, 4 female and 6 male, from
the corpus and developed a classifier for each speaker. For each experiment the
audio from the given speaker is the to-be-verified minority class and the audio
from the nine other speakers constitute the majority class. In this manner we
create a 1:9 class imbalance ratio for each experiment.

Each speaker offers 10 utterances of approximately 3 seconds each. To in-
crease the number of speech utterances, we split each sentence into three equal
parts of approximately 1 second. Early analysis showed that the third part of
each sentence was of lower timbral quality than the preceding sections. Thus
only the first two thirds of each sentence were included in the learning dataset of
200 examples. In the experiments, a training set of size 120 examples is used to
evolve programs, and a test set of 80 examples is used to assess generalisation.

The features calculated on this data are detailed in Section 4.4. Rather than
reducing these features using the statistical mean or variance of the windowed
signal, we employed Principal Component Analysis (PCA) on a number of the
high-dimensional features. PCA was used on these results to record the maximum
variance within each feature while reducing the dimensionality of the data. In
total this resulted in 275 features calculated on 200 data samples.

4.3 GP systems

A number of systems tailored to unbalanced classification problems from the
literature were chosen for this study. These are detailed below.

ST. This system is trained using the original unbalanced dataset. We employ
a version of the MSE-based loss function that has been shown [4] to improve

upon the performance of fitness functions based on classification accuracy 3 or
the weighted average of true positive and true negative rates. Given N training
examples {(xi, ti)}

N
i=1 containing the examples of both majority and minority

classes, LMSE is defined as:

LMSE =
1

N

N
∑

i=1

(Φ(f(xi)) − ti)
2 (1)

where

Φ(x) =
2

1 + e−x
− 1 (2)

and f(xi), ti is the program output and target value for the ith training case
respectively. The sigmoid function in Equation 2 scales f(x) within the range
of {−1, . . . , 1}. Similarly to [4], the target value for the majority class is set to
−0.5, while the target value for the minority class is set 0.5. Classification is
based on a zero-threshold approach; positive program output is mapped to the
minority class label, while negative output is mapped to the majority class label.

AVE. This system is trained using the original unbalanced dataset. The loss
function uses a weighted-average classification accuracy of the minority and ma-
jority classes [4]. Minority accuracy corresponds to the true positive rate, whereas
majority accuracy corresponds to true negative rate. The weighting coefficient
between the two is 0 < w < 1. When w is set to 0.5, the accuracy of both classes
contributes equally to the loss function. In case of w > 0.5 the accuracy of the
minority class contributes more to the loss function, lowering the contribution
of the majority class accuracy. The loss function LAVE is defined as:

LAV E = 1.0 −

(

w ×
TP

TP + FN
+ (1 − w) ×

TN

TN + FP

)

(3)

where TP, TN, FN, FP is the count of true positives, true negatives, false neg-
atives and false positives respectively.

US. Since static under-sampling of the majority class examples can introduce
unwanted sampling bias and discard potentially useful training examples, we
resort to a dynamic version of under-sampling. At every generation, a new set
of examples is drawn random-uniformly from the set of training examples of
the majority class. Under-sampling ensures that the number of examples drawn
from the majority class is the same as the number of examples for the minority
class. The loss function used is given in Equation 1.

3 The number of examples correctly classified as a fraction of the total number of
training examples.

RS. A type of random sampling technique in which programs are evaluated on a
single example drawn uniform-randomly from the entire training dataset in each
generation was shown to improve the generalisation of programs as compared to
the use of the complete training set [15]. An obvious extension of this method to
datasets with class imbalance is to populate the training set with two randomly-
drawn examples (different in each generation), one each from the minority and
majority class. The loss function used is given in Equation 1.

4.4 Feature extraction

High-level features describing fundamental frequency or rhythm are difficult to
measure accurately, possible to mimic and susceptible to emotions. Thus lower
level spectral, cepstral, spectro-temporal and statistical features are more com-
mon for speaker verification. A survey of the literature indicates that the follow-
ing short-term spectral features are the recommended features to include [22].

Mel-frequency Cepstral Coefficients MFCCs have become the standard measure
of speech analysis for some time [30]. They consist of a set of coefficients that
can represent the spectral quality within a sound according to a scale based
on human hearing. Obtaining the MFCCs consists of windowing the sound,
calculating amplitude spectrum of cepstral feature vector for each frame and then
converting this to the perceptually derived mel-scale [26]. The dimensionally of
the MFCCs were reduced in this study using PCA. The first four PCs of the
first 12 MFCCs along with their derivatives are included in these experiments.

Linear Prediction Coefficients Linear prediction calculates a given signal based
on a linear combination of the previous inputs and outputs [28]. As a spectrum
estimation it offers good interpretation in both the time and frequency domains.
In the time domain, LP predicts according to

s[ñ] =

p
∑

k=1

aks[n − k] (4)

Where s[ñ] is the predicted signal, s[n] is the observed signal and ak are the
predictor coefficients. The prediction error or residual is defined as the difference
between the predicted signal and the observed signal:

e[n] = s[n] − s[ñ] (5)

The linear predictive coefficients (LPCs), a[k], are determined by minimising this
residual. This analysis leads to the Yule-walker equations that can be efficiently
solved using Levinson-Durbin recursion [19]. Given the LPC coefficients a[k],
k = 1, . . . ,p, the linear predictive cepstral coefficients (LPCCs) are computed
using the recursions:

c[n] =

{

a[n] +
∑n−1

k=1

k
n
c[k]a[n − k] if 1 ≤ n ≤ p

∑n−1

k=n−p
k
n
c[k]a[n − k] if n > p.

(6)

The first 21 LPCs and 10 LPCCs (apart from the zeroth order) were included in
our dataset. An equivalent measure to these that has become popular in speaker
analysis is line spectral frequencies (LSFs) [19]. These can be useful in practice
as they result in low spectral distortion and are deemed to be more sensitive and
efficient than other equivalent representations.

Perceptual Linear Prediction One downfall of the LP method is that it approx-
imates the spectrum of speech equally well at all frequencies. In contrast, after
800Hz, the human ear becomes less sensitive and spectral resolution decreases
with frequency. This is compensated for by using Perceptual Linear Prediction
(PLP) [16]. The RelAtive SpecTrAl (RASTA) [17] method was developed to
make PLP more robust to linear spectral distortions by replacing the short-term
spectrum by a spectral estimate. This suppresses any slow varying component
making the spectral estimate of that channel less sensitive to slow variations.

Other Features A number of descriptive spectral features were also included in
our dataset. These included the Spectral Centroid, Inharmonicity, Number of
Spectral Peaks, Zero Crossing Rate, Spectral Rolloff, Brightness, Spectral Reg-
ularity and the Spectral Spread, Skewness and Kurtosis. Many of these were
calculated using the MIRToolbox [24], a Matlab toolbox dedicated to the ex-
traction of musically-related features from audio recordings.

4.5 Primitive language, variation operators, GP parameters

The primitive language and the evolutionary run parameters are given in Table 1.
Over 50 generations, the ST and AVE methods perform 6,000 fitness evaluations.
To ensure a fair comparison the number of generations used in the US and RS
methods are adjusted accordingly. Preliminary experiments revealed a tendency
of all systems to overfit, thus the maximum tree-depth is set to 8 to restrict the
complexity of the evolved programs.

Table 1. Function/Terminal sets and run parameters

PRIMITIVE LANGUAGE
Function set +, −, ∗, / (x/y returns x if |y| < 10−5), sin, cos, ex,

log (log(x) returns x if x ≤ 0), sqrt (sqrt(x) returns x if x < 0)
Terminal set 275 features

40 uniform-randomly drawn constants in the range of [−1.0, 1.0]
GP PARAMETERS

Evolutionary algorithm elitist (1% of population size), generational
Population size 1,000
Tournament size 4
No. of generations 51 for ST

51 for AVE
251 for US
3,001 for RS

Population initialisation ramped half-and-half (depths of 2 to 4)
Max. tree depth 8

The search strategy that we employed relies heavily on mutation-based varia-
tion operators. The operation of pointMutation(x) traverses the tree in a depth-
first manner, and depending on the probability x it substitutes a tree-node by an-
other random tree-node of the same arity. The operation of subtreeMutation()
selects a node uniform-randomly and replaces the subtree rooted at that node
with a newly generated subtree. The tree-generation procedure is grow or full,
each applied with equal probability. To improve on the exploratory effect of the
mutation operator, other than picking the tree-node to be replaced from the
whole expression-tree, we devised an additional node-selection method. In this
method a depth-level is picked uniform-randomly from the range of all possible
depth-levels present in the expression-tree, and subsequently a node is picked
uniform-randomly from the set of nodes that lie in the chosen depth-level. The
decision between the two node-selection methods is governed by a probability set
to 0.5 for both methods. Finally, our implementation of recombination operator
is the standard subtree crossover defined for expression-tree representations. The
probability of selecting an inner-node as a crossover point is set to 0.9, while the
probability of selecting a leaf-node is set to 0.1.

In generating offspring, a probability is associated with applying either mu-
tation of crossover, set to 0.7 in favour of mutation. If mutation is chosen,
pointMutation(0.1) is applied with a probability of 0.1, pointMutation(0.2)
is applied with a probability of 0.1, pointMutation(2 / tree_size) is applied
with a probability of 0.2, and subtreeMutation() is applied with a probability
of 0.6.

5 Results

We created 50 splits of the 200 learning examples into training and test sets. In
each split, 120 examples are drawn uniform-randomly for the training set, while
the remaining 80 examples populate the test set. Stratification ensures that the
class imbalance ratio is maintained in both sets. Using each split, we performed
50 independent evolutionary runs using each GP system. Many practitioners
use an equal weighing in the AVE system by setting w = 0.5 [4]. In this work
the effectiveness of AVE is evaluated using a set of values for w, that of W =
{0.5, 0.6, 0.7, 0.8}. In the experiments we performed no model selection, thus the
fittest individual (on the training dataset) of the last generation is designated
as the output of a run.

5.1 Generalisation performance

Table 2 presents statistics of training and test classification accuracy for the
different systems on all 10 speakers. In each case, we report the median, in-
terquartile range, and maximum based on 50 independent runs. Note that in a
classification setup, in which the true positive rate corresponds to the minority
class accuracy, a classifier that always outputs the majority class label attains

a classification accuracy of 0.9 (true positive rate of 0%). Our first observa-
tion concerns the significant difference between training and test performance
in all datasets. This is indicative of overfitting, a typical problem in unregu-
larised GP [1]. There are a number of reasons why overfitting is occurring in
these preliminary experiments. First and foremost, this is attributed to the lim-
ited number of examples for the to-be-verified speakers in each dataset. A second
reason is the absence of both model selection and regularisation from the learning
process. In light of the above, we attempted to limit the syntactic complexity of
the evolved programs by setting the maximum tree-depth allowed during search
to 8, however this was not adequate for preventing overfitting.

The generalisation performance of different systems is presented in the second
part of Table 2. Table 4 presents the p-values of a two-sided Wilcoxon rank sum
test, which tests the null hypothesis that two data samples have equal medians,
against the alternative that they don’t. We set the significance level α to 0.05.
Median test accuracy of ST is shown to be statistically superior to rest of the
systems AVE, RS, US for speakers FJEN0, MMGC0, MPGR1. In addition, ST
median is shown to be statistically superior against that of (a) AVE for speakers
FPJF0, FSAH0; (b) RS for speakers FGRW0, FPJF0, MTRT0; and (c) US
for speakers MJDC0. This result is consistent with the findings in [4], which
showed that the MSE-based loss function of Equation 1 routinely outperformed
loss functions based on classification accuracy or the weighted average between
true positive and true negative rates (Equation 3). The results also suggest that
ST, which uses the original unbalanced datasets, is often statistically superior
or no different to the data-sampling methods of RS and US. Specifically ST
is statistically better in 6/10 speakers, and statistically worse in 1/10 speakers
against RS. Also, ST is statistically better in 4/10 speakers, and statistically
worse in 1/10 speakers against US.

Overall, the median of ST is equal to 90% in 6/10 speakers, and greater than
90% in 4/10 speakers. This suggests that in 50 runs, the median generalisation
performance of ST is consistently equal or better to the performance of a classifier
that always outputs the majority class label. The median test accuracy is higher
than or equal to 90% in 4/10 speakers for AVE; 4/10 speakers for RS; and 5/10
speakers for US. Nevertheless, among 50 runs, the maximum test classification
accuracy that is achieved through evolution is always higher than the one yielded
from the classifier that always outputs the majority class label, for all speakers.

Table 3 presents the test accuracy statistics for the different values of w in
the loss function (Equation 3) of the Ave system. A two-sided Wilcoxon rank
sum test is performed to test the difference in the median values. The table with
the p-values is omitted due to space limitations. We found that no value of w,
where w 6= 0.5 shows a significantly better test classification accuracy compared
to equal weighing. This finding is in accordance with the result reported in [4].

5.2 Feature selection

We can determine the most beneficial features for the given problem by exam-
ining which features are most often chosen by high performing trees. A similar

Table 2. Performance summary. Interquartile range in parentheses.

TRAINING CLASSIFICATION ACCURACY
AVE(w = 0.5) ST RS US

Speaker id Median Max Median Max Median Max Median Max
FGRW0 0.97 (0.04) 1.00 0.98 (0.09) 1.00 0.96 (0.03) 0.99 0.99 (0.03) 1.00
FJEN0 0.97 (0.05) 1.00 0.95 (0.09) 1.00 0.97 (0.02) 0.98 0.98 (0.03) 1.00
FPJF0 0.99 (0.03) 1.00 0.93 (0.08) 1.00 0.97 (0.03) 1.00 0.98 (0.03) 1.00
FSAH0 0.97 (0.05) 1.00 0.90 (0.06) 0.98 0.97 (0.03) 0.99 0.98 (0.03) 1.00
MEFG0 1.00 (0.02) 1.00 0.98 (0.07) 1.00 0.98 (0.02) 1.00 0.99 (0.01) 1.00
MJDC0 0.97 (0.04) 1.00 0.97 (0.07) 1.00 0.96 (0.01) 0.98 0.99 (0.03) 1.00
MKDD0 0.98 (0.04) 1.00 0.97 (0.09) 1.00 0.97 (0.03) 1.00 0.99 (0.02) 1.00
MMGC0 0.95 (0.04) 1.00 0.92 (0.07) 0.99 0.96 (0.03) 0.98 0.97 (0.03) 1.00
MPGR1 0.97 (0.03) 1.00 0.97 (0.06) 1.00 0.96 (0.03) 0.98 0.98 (0.04) 1.00
MTRT0 0.96 (0.03) 1.00 0.90 (0.05) 0.98 0.96 (0.03) 0.99 0.97 (0.03) 1.00

TEST CLASSIFICATION ACCURACY
AVE(w = 0.5) ST RS US

Speaker id Median Max Median Max Median Max Median Max
FGRW0 0.90 (0.06) 0.97 0.91 (0.03) 0.96 0.90 (0.04) 0.97 0.93 (0.04) 0.97
FJEN0 0.85 (0.06) 0.91 0.91 (0.01) 0.95 0.89 (0.03) 0.96 0.88 (0.02) 0.96
FPJF0 0.86 (0.05) 0.95 0.90 (0.04) 0.95 0.88 (0.04) 0.94 0.89 (0.10) 0.96
FSAH0 0.84 (0.05) 0.91 0.90 (0.01) 0.95 0.89 (0.04) 0.96 0.90 (0.05) 0.95
MEFG0 0.93 (0.05) 0.99 0.90 (0.05) 0.99 0.94 (0.03) 0.97 0.91 (0.05) 0.96
MJDC0 0.90 (0.08) 0.96 0.90 (0.04) 0.96 0.90 (0.04) 0.94 0.88 (0.02) 0.94
MKDD0 0.93 (0.07) 1.00 0.90 (0.04) 0.95 0.91 (0.05) 0.97 0.94 (0.04) 1.00
MMGC0 0.81 (0.14) 0.94 0.91 (0.01) 0.94 0.86 (0.04) 0.93 0.86 (0.06) 0.94
MPGR1 0.79 (0.10) 0.94 0.92 (0.03) 0.93 0.88 (0.06) 0.94 0.85 (0.05) 0.93
MTRT0 0.89 (0.07) 0.94 0.90 (0.01) 0.94 0.88 (0.05) 0.94 0.90 (0.05) 0.95

Table 3. Test classification accuracy for AVE. Interquartile range in parentheses.

AVE(w = 0.5) AVE(w = 0.6) AVE(w = 0.7) AVE(w = 0.8)
Speaker id Median Max Median Max Median Max Median Max
FGRW0 0.90 (0.06) 0.97 0.88 (0.11) 0.99 0.84 (0.10) 0.97 0.86 (0.14) 0.96
FJEN0 0.85 (0.06) 0.91 0.85 (0.06) 0.93 0.82 (0.10) 0.90 0.82 (0.10) 0.93
FPJF0 0.86 (0.05) 0.95 0.89 (0.12) 0.95 0.86 (0.09) 0.95 0.86 (0.06) 0.94
FSAH0 0.84 (0.05) 0.91 0.86 (0.06) 0.94 0.82 (0.10) 0.96 0.84 (0.06) 0.91
MEFG0 0.93 (0.05) 0.99 0.93 (0.06) 1.00 0.91 (0.06) 0.95 0.94 (0.05) 0.97
MJDC0 0.90 (0.08) 0.96 0.86 (0.06) 0.96 0.78 (0.12) 0.90 0.84 (0.08) 0.95
MKDD0 0.93 (0.07) 1.00 0.88 (0.12) 0.97 0.91 (0.10) 0.99 0.88 (0.12) 0.99
MMGC0 0.81 (0.14) 0.94 0.81 (0.08) 0.90 0.81 (0.09) 0.90 0.84 (0.07) 0.94
MPGR1 0.79 (0.10) 0.94 0.79 (0.06) 0.93 0.85 (0.09) 0.93 0.82 (0.10) 0.94
MTRT0 0.89 (0.07) 0.94 0.85 (0.10) 0.94 0.85 (0.07) 0.96 0.84 (0.12) 0.95

Table 4. p-values of Winlcoxon rank-sum test. AVE uses w = 0.5.

FGRW0

ST RS US

FJEN0

ST RS US

FPJF0

ST RS US
AVE 0.27 0.50 0.03 AVE 0.00 0.00 0.00 AVE 0.02 0.32 0.20
ST 0.03 0.08 ST 0.04 0.00 ST 0.02 0.92
RS 0.00 RS 0.09 RS 0.23

FSAH0

ST RS US

MEFG0

ST RS US

MJDC0

ST RS US
AVE 0.00 0.00 0.00 AVE 0.00 0.42 0.01 AVE 0.17 0.79 0.05
ST 0.17 0.47 ST 0.00 0.65 ST 0.03 0.00
RS 0.16 RS 0.00 RS 0.00

MKDD0

ST RS US

MMGC0

ST RS US

MPGR1

ST RS US
AVE 0.35 0.71 0.00 AVE 0.00 0.00 0.00 AVE 0.00 0.00 0.00
ST 0.12 0.00 ST 0.00 0.00 ST 0.01 0.00
RS 0.00 RS 0.87 RS 0.00

MTRT0

ST RS US
AVE 0.21 0.28 0.19
ST 0.00 0.80
RS 0.00

method has been used for feature selection in musical instrument analysis [27]. In
examining these successful features, we only considered those programs from 50
independent GP runs that attained a classification accuracy greater than 90%.
A plot of the mean percentage of times each feature is chosen by a successful
classifier is shown in Figure 1. A more detailed account of the top 20 chosen
features for each system is given in Table 5. This table names each of the top
chosen features, reporting the mean percentage of times this features was chosen
from the list of all 275 features and the standard error of this selection.

48 146 214 225 275
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

AVE system

MFCC DMFCC PLP MIR LPC

O
cc

u
rr

en
ce

 (
%

)

(a)

48 146 214 225 275
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ST system

MFCC DMFCC PLP MIR LPC

O
cc

u
rr

en
ce

 (
%

)

(b)

48 146 214 225 275
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RS system

MFCC DMFCC PLP MIR LPC

O
cc

u
rr

en
ce

 (
%

)

(c)

48 146 214 225 275
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

US system

MFCC DMFCC PLP MIR LPC

O
cc

u
rr

en
ce

 (
%

)

(d)

Fig. 1. Mean of the occurrence of all features in the top performing programs from
independent runs for the AVE, ST, RS and US systems described in Section 4.3. Fea-
tures are grouped into the mel-frequency cepstral coefficients (MFCC), their derivatives
(DMFCC), perceptual linear prediction (PLP), other spectral features (MIR) and the
linear prediction coefficients (LPC).

From the plots in Figure 1 it is clear that certain features are chosen more
consistently by high performing classifiers than others. In each system investi-
gated there is a strong peak at feature number 218. We can see from Table 5 that
this corresponds to Inharmonicity. If a sound is perfectly internally ‘harmonious’
each of the upper partials will be integer multiples of the fundamental frequency.

Inharmonicity is a measure of how much the spectral content of a sound differs
from this ideal relationship. Although it has been generally used as a musical
descriptor, its prominent and consistent selection in high performing classifiers
in these experiments indicate that it may be a very strong indicator for voice
verification also. Other individual spectral features are not strongly represented
although the Zero Crossing Rate, Spectral Centroid and the Number of Spectral
Peaks did appear in the top 20 features chosen by at least one system.

Table 5. Top 20 features for each system. Values are reported as the mean percentage
of times each feature was chosen by a successful classifier (accuracy greater than 94%)
with the standard error in parenthesis.

Ave ST RS US
Feature Mean(%) Feature Mean(%) Feature Mean(%) Feature Mean(%)
Inharm 0.89 (0.38) Inharm 0.66 (0.2) Inharm 0.85 (0.16) Inharm 1.03 (0.23)
plp9 1 0.39 (0.18) plp7 1 0.53 (0.1) plp7 1 0.3 (0.11) plp9 1 0.76 (0.15)
plp6 1 0.34 (0.27) plp9 1 0.44 (0.11) plp8 1 0.27 (0.06) plp8 1 0.49 (0.18)
lpcc4 0.27 (0.1) plp8 1 0.43 (0.11) plp9 1 0.24 (0.06) plp7 1 0.47 (0.09)
plpRast5 2 0.23 (0.13) mfcc12 1 0.34 (0.08) plpRast3 2 0.21 (0.01) mfcc12 1 0.43 (0.1)
lpcc3 0.2 (0.15) lpcc7 0.28 (0.09) mfcc12 1 0.19 (0.03) plp6 1 0.4 (0.16)
mfcc12 1 0.19 (0.04) plp5 1 0.28 (0.1) plp5 1 0.19 (0.05) plp5 1 0.37 (0.1)
plp5 1 0.19 (0.1) mfcc6 1 0.22 (0.1) plp8 3 0.16 (0.05) lpcc5 0.28 (0.14)
lpcc2 0.18 (0.17) mfcc7 1 0.2 (0.08) mfcc3 1 0.14 (0.04) lpcc7 0.27 (0.16)
lpcc5 0.18 (0.1) lpcc8 0.19 (0.09) lpcc7 0.14 (0.03) lpcc3 0.26 (0.1)
Dmfcc7 2 0.17 (0.07) plp4 1 0.19 (0.07) plp3 1 0.14 (0.09) mfcc9 1 0.21 (0.06)
plp7 1 0.17 (0.06) lpcc5 0.18 (0.09) DDmfcc9 1 0.13 (0.02) DDmfcc6 2 0.21 (0.06)
mfcc9 1 0.14 (0.07) mfcc9 1 0.18 (0.06) Centroid 0.12 (0.02) ZeroCross 0.2 (0.09)
mfcc5 3 0.14 (0.09) mfcc2 1 0.17 (0.08) mfcc10 3 0.1 (0.00) NoPeaks 0.19 (0.1)
plp3 1 0.13 (0.12) mfcc8 1 0.12 (0.06) Dmfcc5 2 0.1 (0.00) mfcc4 1 0.18 (0.05)
plp4 1 0.12 (0.08) plp9 2 0.12 (0.05) DDmfcc1 2 0.1 (0.00) mfcc6 1 0.17 (0.07)
DDmfcc6 1 0.12 (0.11) mfcc10 2 0.12 (0.08) lpcc3 0.1 (0.04) lpcc9 0.17 (0.06)
plp8 1 0.11 (0.08) DDmfcc4 1 0.12 (0.05) lsf19 0.09 (0.09) plp4 1 0.16 (0.04)
plpRast6 2 0.1 (0.05) Dmfcc6 1 0.12 (0.07) mfcc7 1 0.09 (0.04) mfcc2 1 0.16 (0.11)
ZeroCross 0.1 (0.1) lpcc3 0.11 (0.06) mfcc6 1 0.08 (0.05) DDmfcc11 1 0.15 (0.05)

From Table 5 we can see that higher order PLPs were the next most se-
lected feature. Within these only the first PC was chosen, indicating that the
variance in the principle dimension for these features contains the most useful
information. Surprisingly, the RASTA variations were not selected as frequently
implying that the original implementation of the PLPs are more important for
this problem. This may be because we used the high quality audio signal from
the TIMIT database without adding noise. The RASTA method was developed
to compensate for noisy channels, but as our signals are not noisy they are not
found to be more beneficial than the standard PLP implementation.

The LPCCs were prominent among the highly selected features. LPCC3 was
within the top 20 for each system and LPCCs 7 and 5 also featured in three
of the four systems. Interestingly, the LPCs did not feature as strongly as their
cepstral counterparts, indicating that in linear prediction for these problems the
cepstral domain may be influential than the spectral domain. MFCCs have for a
long time been one of the most widely used features in speech analysis. It may be
surprising then to see that they did not appear as prominently as other features

already discussed. In saying that, the first PC of a number of higher MFCCs
did emerge as consistently chosen by successful classifiers. The derivatives of the
MFCCs were among the least successful features.

6 Conclusions and Future Work

In this work we applied GP to evolve speaker verification programs on highly un-
balanced training datasets. We found that using a number of independent runs,
it is possible to evolve good-generalising programs, however good generalisation
is not consistent in terms of median performance across all runs for the majority
of systems. The MSE-based loss function that measures the discrepancy between
program output and target value attained a median generalisation performance
that is at least as good as the “majority classifier” for all speakers. This out-
performed the loss function based on the weighted accuracy between minority
and majority classes for most speakers. In addition, the MSE-based loss function
performed better when used on the original unbalanced dataset than when used
in combination with down-sampling in nearly all speakers. Finally, the use of
non-equal weighted misclassification costs for the minority and majority classes
did not significantly improve generalisation compared to an equal weighting.

In future work we plan to improve on the overfitting problem encountered
during training. Restricting the size of the evolved solutions did not provide
an effective remedy. We are experimenting with restricting the complexity of
programs in the ST system through the use of a first-order Tikhonov-based
regulariser that penalises functions that change rapidly. The Tikhonov function
is minimised through multi-objective optimisation. Another possible solution
against overfitting is the use of validation-based model selection for designating
the output of the evolutionary process. Holding-out a validation set is however
prohibitive using the limited training resources currently available. The use of
analytical model selection methods that estimate the optimism of training error
in terms of program complexity and training sample size is a possible line of
attack. Having highlighted the limitations of standard GP fitness functions and
data-sampling methods, we plan to experiment with additional fitness functions
that were shown to be very effective in unbalanced datasets [4]. The use of
the Area Under Curve as a fitness function is expected to drastically improve
performance. We will compare these new experiments against current state of
the art machine learning methods.

The feature selection reported is averaged across all successful speakers for
each method. Our next experiment will evolve classifiers with GP using only the
subset of top 20 features selected in this study. This will determine not only what
features to use, but the best way to combine them for robust ASV. Furthermore,
we will consider the selection of features by individual speakers to investigate
the dependency of feature extraction on individual voice characteristics.

Acknowledgments

This work was carried out as a collaboration of projects funded by Science Foun-
dation Ireland under grant Grant Numbers 08/SRC/FM1389 and 13/IA/1850.

References

1. Agapitos, A., Brabazon, A., O’Neill, M.: Controlling overfitting in symbolic regres-
sion based on a bias/variance error decomposition. In: PPSN XII (part 1). LNCS,
vol. 7491, pp. 438–447. Springer, Taormina, Italy (Sep 1-5 2012)

2. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: A study of the behavior of several
methods for balancing machine learning training data. SIGKDD Explor. Newsl.
6(1), 20–29 (jun 2004)

3. Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: Balancing strategies and class
overlapping. In: Advances in Intelligent Data Analysis VI, 6th International Sym-
posium on Intelligent Data Analysis, IDA 2005, Madrid, Spain, September 8-10,
2005, Proceedings. LNCS, vol. 3646, pp. 24–35. Springer (2005)

4. Bhowan, U., Johnston, M., Zhang, M.: Developing new fitness functions in genetic
programming for classification with unbalanced data. Systems, Man, and Cyber-
netics, Part B: Cybernetics, IEEE Transactions on 42(2), 406–421 (2012)

5. Bhowan, U., Johnston, M., Zhang, M., Yao, X.: Evolving diverse ensembles using
genetic programming for classification with unbalanced data. Evolutionary Com-
putation, IEEE Transactions on 17(3), 368–386 (2013)

6. Burton, D.: Text-dependent speaker verification using vector quantization source
coding. Acoustics, Speech and Signal Processing, IEEE Transactions on 35(2),
133–143 (1987)

7. Campbell, W.M., Sturim, D.E., Reynolds, D.A.: Support vector machines using
gmm supervectors for speaker verification. Signal Processing Letters, IEEE 13(5),
308–311 (2006)

8. Curry, R., Lichodzijewski, P., Heywood, M.I.: Scaling genetic programming to large
datasets using hierarchical dynamic subset selection. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Part B - Cybernetics 37(4), 1065–1073 (August 2007)

9. Day, P., Nandi, A.K.: Robust text-independent speaker verification using genetic
programming. Audio, Speech, and Language Processing, IEEE Transactions on
15(1), 285–295 (2007)

10. Dehak, N., Kenny, P.J., Dehak, R., Dumouchel, P., Ouellet, P.: Front-end factor
analysis for speaker verification. Audio, Speech, and Language Processing, IEEE
Transactions on 19(4), 788–798 (2011)

11. Doucette, J., Heywood, M.I.: GP classification under imbalanced data sets: Active
sub-sampling and AUC approximation. In: Proceedings of EuroGP 2008. LNCS,
vol. 4971, pp. 266–277. Springer (2008)

12. Eggermont, J., Eiben, A.E., van Hemert, J.I.: Adapting the fitness function in
GP for data mining. In: GP, Second European Workshop, Göteborg, Sweden, May
26-27, 1999, Proceedings. LNCS, vol. 1598, pp. 193–202. Springer (1999)

13. Garofolo, J.S., Lamel, L.F., Fisher, W.M., Fiscus, J.G., Pallett, D.S.: Darpa timit
acoustic-phonetic continous speech corpus cd-rom. nist speech disc 1-1.1. NASA
STI/Recon Technical Report N 93, 27403 (1993)

14. Gathercole, C., Ross, P.: Dynamic training subset selection for supervised learning
in genetic programming. In: Parallel Problem Solving from Nature III. LNCS, vol.
866, pp. 312–321. Springer-Verlag, Jerusalem (9-14 Oct 1994)

15. Goncalves, I., Silva, S., Melo, J.B., Carreiras, J.M.B.: Random sampling technique
for overfitting control in genetic programming. In: Proceedings of EuroGP 2012.
LNCS, vol. 7244, pp. 218–229. Springer Verlag, Malaga, Spain (11-13 Apr 2012)

16. Hermansky, H.: Perceptual linear predictive (plp) analysis of speech. The Journal
of the Acoustical Society of America 87, 1738 (1990)

17. Hermansky, H., Morgan, N., Bayya, A., Kohn, P.: Rasta-plp speech analysis tech-
nique. In: Acoustics, Speech, and Signal Processing, 1992. ICASSP-92., 1992 IEEE
International Conference on. vol. 1, pp. 121–124. IEEE (1992)

18. Holmes, J.H.: Differential negative reinforcement improves classifier system learn-
ing rate in two-class problems with unequal base rates. In: 3rd Annual Conf. on
Genetic Programming. pp. 635–642. ICSC Academic Press (1998)

19. Huang, X., Acero, A., Hon, H.W., et al.: Spoken language processing, vol. 15.
Prentice Hall PTR New Jersey (2001)

20. Kenny, P., Boulianne, G., Ouellet, P., Dumouchel, P.: Factor analysis simplified.
In: Proc. ICASSP. vol. 1, pp. 637–640. Citeseer (2005)

21. Kenny, P., Boulianne, G., Ouellet, P., Dumouchel, P.: Joint factor analysis versus
eigenchannels in speaker recognition. Audio, Speech, and Language Processing,
IEEE Transactions on 15(4), 1435–1447 (2007)

22. Kinnunen, T., Li, H.: An overview of text-independent speaker recognition: From
features to supervectors. Speech communication 52(1), 12–40 (2010)

23. Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: One-
sided selection. In: Fisher, D.H. (ed.) Proceedings of the Fourteenth International
Conference on Machine Learning (ICML 1997), Nashville, Tennessee, USA, July
8-12, 1997. pp. 179–186. Morgan Kaufmann (1997)

24. Lartillot, O., Toiviainen, P.: A matlab toolbox for musical feature extraction from
audio. In: International Conference on Digital Audio Effects. pp. 237–244 (2007)

25. Liares, L.R., Garca-Mateo, C., Alba-Castro, J.L.: On combining classifiers for
speaker authentication. Pattern Recognition 36(2), 347–359 (2003)

26. Logan, B., et al.: Mel frequency cepstral coefficient for music modelling. In: ISMIR
(2000)

27. Loughran, R., Walker, J., ONeill, M., McDermott, J.: Genetic programming for
musical sound analysis. In: Evolutionary and Biologically Inspired Music, Sound,
Art and Design, pp. 176–186. Springer (2012)

28. Makhoul, J.: Linear prediction: A tutorial review. Proceedings of the IEEE 63(4),
561–580 (1975)

29. Márquez-Vera, C., Cano, A., Romero, C., Ventura, S.: Predicting student failure
at school using genetic programming and different data mining approaches with
high dimensional and imbalanced data. Applied intelligence 38(3), 315–330 (2013)

30. O’Shaughnessy, D.: Speech communication: human and machine. Universities press
(1987)

31. Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted
gaussian mixture models. Digital signal processing 10(1), 19–41 (2000)

32. Sivaram, G.S., Thomas, S., Hermansky, H.: Mixture of auto-associative neural
networks for speaker verification. In: INTERSPEECH. pp. 2381–2384 (2011)

33. Song, D., Heywood, M.I., Zincir-Heywood, A.N.: Training genetic programming on
half a million patterns: an example from anomaly detection. Evolutionary Com-
putation, IEEE Transactions on 9(3), 225–239 (2005)

34. Winkler, S.M., Affenzeller, M., Wagner, S.: Advanced genetic programming based
machine learning. J. Math. Model. Algorithms 6(3), 455–480 (2007)

