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Abstract.
Genetic Programming (GP) is known to be expensive in cases where the fitness evaluation is computationally

demanding, i.e., object detection, programmatic compression, image processing applications. The paper intro-
duces a method that reduces the amount of fitness evaluations that are required to obtain good solutions. We
consider the supervised learning setting, where a training set of input vectors are collectively mapped to a vector
of outputs, and then a loss function is used to map the vector of outputs to a scalar fitness value. Saving of
fitness evaluations is achieved through the use of two components. The first component is surrogate model that
predicts trees output for a particular input vector xi based on the similarity between xi and other input vectors
in the training set for which the candidate solution has been already evaluated with. The second component, is a
simple linear equation to control the size of a sub-training set that is used to train GP trees. This linear equation
allows the size of the sub-training set to dynamically increase or decrease based on the status of the search. The
proposed method referred to as SSGP. Empirical results in 17 different problems, from three different categories,
demonstrate that SSGP is able to obtain solutions of similar quality with those obtained using several benchmark
GP systems, but with a much smaller computation time. The simplicity of the proposed method and the ease of
its implementation is one of the most appealing aspects of its future utility.

Keywords: Genetic Programming, Surrogate modelling, K-NN, Symbolic Regression, Classification, Time-
series forecasting

1. Introduction

Genetic Programming (GP) is a powerful model induction method. We consider model
induction to be synonymous to the general function estimation problem. One is given a
set of training examples {xi, yi}, i = {1, ..., N}, where y is the response variable and x
∈ Rd is a vector of explanatory variables. The goal is to find a function F ∗(x) that maps
x to y, such that over the joint distribution P (x, y) the expected value of a loss function
L(y, F (x)) is minimised:

F ∗(x) = argmin
F (x)

Ex,y[L(y, F (x))] (1)
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Much of the power and generality of GP rises from its non-parametric nature. GP em-
ploys a variable expression-tree model representation that makes no assumption about the
classes of models that will be relevant to the problem at hand, and places the least possible
constraints on the space of models that are allowed to be explored throughout an evolution-
ary run. The trial-and-error search regime comes with the cost of interpreting a significant
number of program structures for quantifying the merit of candidate solutions. In case
of computationally expensive problems, like for example those of object detection, image
processing, and DNA clustering, fitness evaluation can present a serious bottleneck to the
evolutionary process in terms of time inefficiency. In this work, our interest is to retain
the appeal of GP algorithms, which can handle challenging problems with high-quality
designs at enhanced computational efficiency.

Surrogate Models (SMs) [4], also known as response surface models, are often used to re-
duce the cost of expensive objective functions. SMs are approximation models, that mimic
the behaviour of the simulation model as closely as possible while being fast surrogates
for time-consuming computer simulations. An SM is an easily evaluated mathematical
model that approximates an expensive objective function as precisely as possible. The in-
side knowledge of the objective function is not necessary to be known or to be used for the
construction of an SM. Normally, SMs are built using solely discrete evaluations of the ex-
pensive objective function. From an abstract point of view, SMs are black boxes that map
inputs to their corresponding outputs using a training set and generalise this knowledge on
unseen inputs in order to predict their corresponding outputs. Usually, this requires SMs’
predictions to be based on some distance measure between points in the training set in
order to make a reasonable prediction.

This paper proposes a novel method to build surrogate models in GP for saving upon
fitness evaluations. We consider the supervised learning setting, where a training set of
input vectors are collectively mapped to a vector of outputs, and then a loss function is
used to map the vector of outputs to a scalar fitness value. Saving of fitness evaluations is
achieved through the use K-Nearest Neighbour (KNN) surrogate [1].

In standard GP, all input vectors need to be explicitly mapped to an element of the output
vector via program execution. However, the proposed method randomly chooses a sub-
training set every generation (where the size of the sub-training is dynamic). Thus, only
a portion of the examples that are contained in the original training set will be evaluated.
The new method saves on the rest program executions by building a surrogate model that
is able to predict program semantics for a particular input vector based on the similarity of
this input vector with those vectors that were evaluated using standard program execution.
In order to compensate the cost of a potentially complex model of program semantics we
employ the very simple and non-parametric KNN averaging rule. Once the semantics have
been predicted, these are mapped to a fitness value through the use of the loss function that
takes the form of average mean of absolute errors. The proposed approach is referred to as
Semantic Surrogate GP (SSGP).

The reader’s guide to the rest of the article is as follows: Section 2 presents background
literature on surrogate modelling. Section 3 introduces SSGP. Section 4 presents the em-
pirical study using the proposed method. Section 5 concludes and outlines directions of
future work.
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2. Related Work

2.1. Surrogate Models for Vectorial Representations

The general consensus on surrogate-assisted evolutionary frameworks is that the efficiency
of the search process can be improved by replacing, as often as possible, calls to the costly
objective functions, with surrogates that are deemed to be less costly to build and compute.
In this manner, the overall computational burden of the evolutionary search can be greatly
reduced, since the effort required to build the surrogates and use them is much lower than
those in the traditional approach that directly couples the evolutionary algorithm with the
costly objective functions [3][27] [20] [9] [26].

Early approaches have focused on building global surrogates [27] that attempts to model
the complete problem fitness landscape. However, due to the effects of the curse of di-
mensionality [2], many have turned to local surrogate models [6][21] or their synergies
[30] [29] or ensembles. The use of domain knowledge including gradient information
and physics-based models [11] [17] to improve the prediction accuracy of the surrogates
have also been considered. The use of more than one surrogate, for example ensemble
and smoothing surrogate models, and with preference for surrogates that generate search
improvements over prediction accuracy was also considered in both single and multi-
objective optimisation [16].

The early work in Ong et al. [21] was among the first to have successfully proposed
the use of a local surrogate embedded in a gradient based trust-region framework with
Genetic Algorithm (GA). The model uses GA to generate a population of individuals and
rank them with a real-valued function. A gradient-based local search is then performed
on the Surrogate Model (SM) to find new promising solutions. Both the GA and the local
search are alternatively used under a trust-region framework until the optimum is found, in
the spirit of Lamarckian learning. The trust-region framework is used to guarantee that the
search will converge to the optimal of the original problem despite the use of surrogates.
Subsequently, Lian et al. [15] also investigated the enhancement of standard GA using
local surrogate search to expedite its convergence.

Lim et al. [16] presented a generalised surrogate-assisted evolutionary framework for
the optimisation of problems that are computationally expensive to evaluate. The authors
introduced the idea of employing multiple on-line local SMs that are constructed using
data points that lie in the vicinity of an initial guess. Improved solutions generated by local
search that considers the ‘Curse and Bless of uncertainties’ of SMs are used to replace the
original individual(s). In their work, the framework was presented for both single objective
optimisation and multi-objective optimisation.

In principle, the present surrogate models used are implicitly or explicitly spatial meta-
models, as their predictions involve exploiting some assumed spatial smoothness or con-
tinuity between the values of the objective function at a query point whose value is un-
known and has to be predicted based on the known solutions in the search space. This
makes objective meta-models naturally suited to continuous function optimisation. As
such, the plethora of research studies that incorporate SMs to speed up evolutionary search
on computationally expensive problems were made on problems involving continuous or
real-valued variables. Particularly, if the input variables are real-valued, the simple Eu-
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clidean distance can be readily used. When the defined distance-measure correlates well
with the fitness landscape, the meta-model is generally capable of approximating the search
space. However, if the distance-measure just quantifies structural differences between so-
lutions without consideration for their fitness values, then using the surrogate can mislead
the search process since they may not approximate the search space well.

Based on the previous observation, Moraglio and Kattan [18] showed that SMs can be
naturally generalised to encompass combinatorial spaces based in principle on any arbi-
trarily complex underlying solutions’ representation by generalising their geometric inter-
pretation from continuous to general metric spaces. Illustrative examples given are related
to Radial Basis Function Networks (RBFNs) defined on the Hamming space associated
with binary strings, which was used as a surrogate in GA system for optimising discrete
combinatorial problems. These include the well-known NK-landscape problem.

In [10], the authors proposed a surrogate model called GP-RBFN Surrogate where GP
has been used as an optimisation engine to optimise RBFN parameters in such a way as
to improve its prediction accuracy. GP receives RBF functions as a primitive and tries to
evolve a new RBF expression with different width parameters. The evolved RBFN has
been used as a surrogate model to improve GA search. Experimental results on different
MAX-SAT problems showed that GP-RBFN Surrogate improved the performance of GA
search with a limited evaluation budget. The interesting remark about this work is that the
authors implemented surrogate on a discrete problem and obtained good results.

Sun et al. [25], presented a two-layers surrogate-assisted Particle Swarm Optimisation
(TLSAPSO) algorithm, in which a global and a number of local surrogate models are
employed for fitness approximation. The model uses a global database of all particles
found during the search in order to build the global surrogate model. Once the global model
pinpoint a promising region, the system builds a local model using information from the
neighbourhood around this point to enhance predictions made by the global model.

2.2. Surrogate Models for GP Representation

Kim et al. [12], argued that it is possible to extend surrogate model-based optimisation
(SMBO) to more complicated representations which cannot be naturally mapped to vectors
of features, if and only if, a suitable distance metric was defined. To this end, the authors
showed that any surrogate model that can be written in terms of Euclidean distances be-
tween candidate solutions can be naturally generalised by replacing the Euclidean distance
function with a generic metric appropriate to the target representation. In their experi-
ments, RBFN has been used as a surrogate model on different benchmark problems for
GA and GP. Different distance metrics have been used within the RBFN. The presented re-
sults for GP problems are not very different from those obtained with other methods when
the distance metric was not suitable.

In [24], Schmidt and Lipson introduced a different model to approximate fitness land-
scape in GP using co-evolutionary approach. The proposed framework used three pop-
ulations: 1) solutions to the original problem, evaluated using only fitness predictors; 2)
fitness predictors of the problem; and 3) fitness trainers, whose exact fitness is used to
train predictors. The fitness trainers are simply some selected pairs of individuals and
their exact fitness measure which are used to evolve predictors. The predictors are used
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to approximate fitness of individuals in the first population. Empirical results with sym-
bolic regression problems of this co-evolutionary approach showed a faster convergence
rate than other GP system. The comparison was based on the needed number of point
evaluations until the system finds solutions with error rate < ε.

To the best of our knowledge, no previous work has successfully defined surrogate mod-
els on complex representations, such as the GP tree-like representation, other than real-
valued vectors. When dealing with complex representation like the GP tree-like represen-
tation, there is no straightforward way to predict the fitness of a tree given its structural
distance from another tree with known fitness, hence surrogate models cannot be easily
used in GP search. Therefore, for search problems naturally based on structured represen-
tations, surrogate models can be used only after transforming the original representation
to a real-valued vector form. In [19] and [12], an attempt was presented to apply RBFN
surrogate model on GP, but it was concluded that the results reported were not significantly
different from those obtained by a standard GP system.

3. Semantic Surrogate GP

The process of SSGP is broadly outlined in Figure 1. SSGP operates similarly to standard
GP. The only difference residing in the fitness evaluation part. SSGP starts by randomly
initialising a population using the ramped half-and-half method [13], and then uses stan-
dard sub-tree crossover and sub-tree mutation to explore the search space.

Assuming that one has a symbolic regression problem specified in a training set T =
{(xi, yi)|i = 1, ..., n} where xi represents the ith input vector and yi is its associated
output value. Consequently, the problem is to to obtain a function f that minimise some
loss function (e.g., mean square error). Given that, the inputs are static in the sense that
these do not change during the learning phase of the algorithm. Thus, the problem can
be formulated in finding the function f that approximate as closely as possible the vector
t = (y1, ..., yn).

Fitness evaluation in GP can be viewed as a mapping from a syntactic space into a seman-
tics space, and then as an additional mapping from a semantics space into a fitness value.
Formally, this can be represented as follows, let S, V , and F be the syntactic, semantic,
and fitness spaces, respectively. The function Eval(tr, xi) = vxi is the function that ex-
ecutes the code in tree tr using xi as an input and produces its semantics (i.e., a vector of
vxi ’s outputs given the inputs), mapping S → V . Furthermore, let Fitness(vxi) = ŷi
be the function that maps semantics into a fitness value. Thus, Fitness(vxi) = ŷi maps
V → F , and can take the form of an arbitrary loss function, i.e., mean squared error or
mean absolute error. The most expensive part of the mapping process (i.e., S → V → F )
lies within the Eval(tr, xi) function. SSGP leverages on the S → V mapping by plugging
a local surrogate model to substitute the Eval(tr, xi) function.

SSGP evaluates each tree within the population using a sub-training set. It then predicts
each tree’s outputs for the remaining fitness cases using a local surrogate model based on
the simple K-Nearest Neighbour method. More formally, let a training set given to GP be
the set T = {(xi, yi)|i = 1, ..., n} and let a sub-set of T be Tsub = {(xi)|i = 1...z}
where Tsub ⊂ T and z << n.
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Figure 1. Workflow outline of fitness evaluation in SSGP.

The size of the training sub-set Tsub is defined based on Algorithm 1. This simple
algorithm allows the size of the training sub-set to increase or decrease based on the status
of the search. For example, when an improvement in the best-so-far fitness is detected the
algorithm assumes that the search is getting closer to a local optimum and thus reduces the
computational cost (i.e., by reducing the size of the training sub-set). If the improvement
stopped then it will gradually increase the size of the training sub-set allowing the fitness
measure to be more deterministic. Finally, if no improvement was detect for a fixed number
of generations then it will decide to save computational cost and will start reducing the size
of the training sub-set. The size of the training sub-set will be capped between 99%− 5%.

Algorithm 1 starts from an initial size for the training sub-set at 99% of training set
original size. Then, it simply reduces the size of the training set every time the best-so-
far fitness improves. If no further improvements was detected then it decides to gradually
increase the size of the training sub-set (at steps of 0.1% every generation). However, if
no improvement in the best-so-far fitness was detected for 20 continuous generations then
the algorithm will assume that the search is trapped in local optimum and will reduces the
training sub-set gradually. The max step size of reducing training sub-set defined as 5%
and the value of reduction will be scaled based on the number of generation. The idea of
dynamically select a sub-set of the training set has been addressed in the literature before
(e.g., see Dynamic Subset Selection and Historical Subset Selection in [5]).
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Algorithm 1: Size of training sub-set.

var reduce step = 0.05;1

var increase step = 0.001;2

var platu = 20;3

sub set = 0.99;4

var scale = index current generation
max number of generations ;5

if IsImproved(Best so far fitness) is true then6

sub set = sub set - (reduce step × scale)7

end8

if IsImproved(Best so far fitness) == false then9

sub set = sub set + increase step10

end11

if IsImproved(Best so far fitness) == false AND No Improvement for a fixed number12

of generations then
sub set = sub set - (reduce step × scale)13

end14

return Training sub set size = sub set × TrainingSet size;15

Note that the system evaluates the trees using the sub-training set (which has dynamic
size as explained above) and uses KNN algorithm to predict the trees’ outputs on the re-
maining un-evaluated training examples (more details in the next section).

3.1. K-Nearest Neighbour Surrogate

SSGP uses a local surrogate model to predict tree-output based on the K-Nearest-
Neighbour (K-NN) method [1]. A training sample xi ∈ Rd is represented as a d-
dimensional vector of real values. For each tree in the population, the system calculates the
outputs t = {y0, ..., yz} of the sub-training set Tsub. The remaining unevaluated training
samples which are in set Diff = T −Tsub are mapped to tree-outputs using the K-NN. A
predicted output is simply the average of outputs for the K nearest input vectors in Tsub.

4. Empirical Evaluation

The main aim of this paper is to introduce the notion of surrogate to the GP semantic space
and reduce time of the training process. However, we want to achieve this without sig-
nificantly compromise the quality of evolved solutions. The contribution of the proposed
SSGP is in its training time which as will be shown by the experiments, SSGP several
order of magnitude faster than other GP systems. In this paper, we did not focused on the
execution time of the testing phase (i.e., execution of the evolved program on the testing
set).

In terms of performance, we show that SSGP achieves solutions that are not far from
those obtained by other GP systems. More importantly, the quality of SSGP’s solutions are
similar to the other GP systems included in the comparison (statistically tested). Hence, the
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application of SSGP makes an excellent added value for practitioners who are interested
in evolving acceptable solutions (similar to those obtained by canonical GP systems) in
shorter CPU time.

The experiments included 17 test problems divided into three categories. Namely, 9
classifications problems from the UCI repository [23], 3 time-series forecasting problems,
and 5 symbolic regression problems. The experiments will focus on two main aspects
of the comparison; A) Execution time (of training phase), and B) Performance. In this
experiments, we used desktop PC with Intel core i7 processors, 2.40 GHz 8GB RAM,
running 64-bit Windows 8 OS. The execution time was measured at code level using CTime
library in c++. As will be shown in the next sub-sections, SSGP has lower training time
than all competitors, in most cases, at significant margins. While, all algorithms have close
results in terms of performance.

4.1. Experimental Settings

The aim of the reported experiments is to investigate the performance of SSGP under dif-
ferent circumstances. In our experiments, we compared SSGP against: 1) standard GP
(SGP), 2) steady state GP (steadyGP) [28], 3) GP with random training sampling tech-
nique (RT-GP) [7], and 4) GP with dynamic random sub-set selection using the technique
described in Algorithm 1 (DT-GP). Standard GP was selected in the comparison because
it can be considered as the baseline system. Steady state GP was selected because it has
quick convergence rates which makes it a good competitor to SSGP in finding good solu-
tions within a limited number of evaluations. GP with a random sampling technique was
selected in the comparison because it also evaluates trees using sub-training set (based on
a randomly selected sub-set of the complete training sample). Finally, GP with dynamic
random sub-set selection using the technique described in Algorithm 1 is selected to test
whether KNN prediction will add value to the search or not.

All GP systems included in the experiments received exactly the same settings as pre-
sented in table 1. For RT-GP, we set the size of the sub-set at 50% of the of original training
set, randomly selected and change in every generation. For SSGP and DT-GP, we set the
initial size of the training sub-set at 99% of the original training set.

4.2. Classification problems

For classification problems, we used 9 problems, presented in table 2, to test SSGP perfor-
mance. In this paper, we used GP trees’ output as a range index to perform classification.
For example, if the number of classes is 3 (like in the Balance scale problem), then GP
trees are expected to produce outputs< 0 for instances from class 1, outputs from [0, 1] for
instances from class 2, and outputs> 1 from instances from class 3. The fitness measure is
simply the total number of misclassified training instances (i.e., a minimisation problem).
All GP systems are equipped with the function set presented in table 3. As presented in the
table, we added a set of statistical measures that are used to extract new features from the
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Table 1. All GP systems settings used in the experiments.

Parameter Value

Sub-tree Mutation 30%
Sub-tree Crossover 70%

Tournament size 2
Population Size 200

Generations 200
Initialisation method ramped half-and-half

SSGP special parameters

K (in K-NN) 10
Initial training sub-set size 99% of original training set

DT-GP special parameters

Initial training sub-set size 99% of original training set

RT-GP special parameters

training sub-set size 50% of original training set

attribute set of each problem. We found this, generally, enhance the performance of GP
solutions. We divided the data into three disjoint sets as follows; 25% training set, 25%
validation set, and 50% testing set. The best evolved solution in each generation was fur-
ther evaluated using the validation set and the best solution that has the best performance
on the validation set across the whole run was selected as the final evolved solution 1.

As mentioned previously, SSGP evaluates fitness function partially, using the training
sub-set, and then use KNN to predict the trees’ output for the remaining unevaluated cases.
In this problem, KNN employed a majority voting scheme to predict the output of trees
when evaluating any unevaluated instance.

Table 2. Classification problems used in the experiments from UCI repository [23].

Problem Number of Instances Number of Attributes Number of Classes

Breast Cancer 286 9 2
Heart Disease 303 75 4

Ionosphere 351 34 2
Credit Approval 690 15 2

Banknote authentication 1372 5 2
Image Segmentation 2310 19 7

Cardiotocography 2126 23 3
Balance Scale 625 4 3

Liver Disorders 345 7 2
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Figure 2. Summary of CPU execution time of 9000 independent GP runs. Results are collected from (200)
independent runs for each GP system. Numbers represent the GP training time in seconds.
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Table 3. GP systems function-primitive sets for classification prob-
lems

Function set +, -, /, *
statistical features Mean, Median, StD, AverageDev, Entropy

Constants 10 constants from [1, 10]

*StD = Standard Deviation, AverageDev = Average Deviation

Figures 2, summarise the CPU execution time (in seconds) of 9000 GP runs (in the
training process). Each GP system tried to evolve classifiers for the given problems through
200 independent runs. We reported the mean, median, and best CPU execution time across
the whole runs. As can be clearly seen, SSGP has the lowest execution time in terms of
mean, median and best in 8 out of 9 cases. This is remarkable results given the margin of
differences. The only two cases where SSGP was slower are the Cardiotocography and
the Image Segmentation problems. To further verify the significance of these results, we
performed non-parametric Friedman statistical test to rank the five algorithms tested. As
it can observed from table 4, the SSGP execution time was ranked first in 7 out of the 9
test problems; in addition, Holm’s post-hoc test [6] showed that in all 9 problems the first
ranking were statistically significant at 5% level.

Now, if we turn our attention to the classification errors. Table 5 shows the classification
errors (on the testing set) presented as percentages for all GP systems in all test problems.
As shown in the table, there is no single algorithm dominates all other in all test problems
(or at least in most of them). In addition, the performance differences between all five
algorithms are marginal. To further verify this, table 6 presents the Friedman statistical test.
The lowest rank algorithm was interchanging between SGP and SteadyGP. The P-Value
vary less and higher than 5% significance level. In the cases where P-Value is statistically
significant the performance difference is very small, as shown in table 5.

Table 4. Friedman statistical test to compare execution times. Bold numbers are the lowest
ranks and last column shows P-value of all system against the system with the lowest rank.
We used the notation < 0.05 to show that the GP system with the lowest rank is statistically
significant than all other GP systems at 5% significance level.

Classification Problem SSGP SGP SteadyGP DT-GP RT-GP P-Value

Breast Cancer 1.34 4.66 4.34 2.15 2.51 < 0.05
Cardiotocography 4.01 3.54 1.66 3.74 2.06 < 0.05

Ionosphere 1.07 4.86 3.46 1.96 3.65 < 0.05
Credit Approval 1.08 4.64 4.35 2.10 2.82 < 0.05

Banknote authentication 1.10 4.89 4.06 1.98 2.97 < 0.05
Image Segmentation 2.22 4.75 4.09 1.19 2.75 < 0.05

Heart Disease 1.26 4.68 4.21 1.82 3.03 < 0.05
Liver Disorders 1.11 4.90 3.26 1.98 3.77 < 0.05
Balance Scale 1.10 4.85 3.60 2.39 3.06 < 0.05
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Table 5. Summary of classification error of 9000 independent
GP runs. Each system was tested through 200 independent runs.
Results shows the classification error rates in percentages (on the
testing set). Bold numbers are the lowest.

SSGP SGP SteadyGP DT-GP RT-GP

Breast Cancer

Mean 0.03 0.04 0.03 0.03 0.05
Median 0.03 0.04 0.03 0.03 0.04

Best 0.01 0.02 0.02 0.02 0.02

Cardiotocography

Mean 0.13 0.13 0.21 0.13 0.13
Median 0.13 0.13 0.22 0.13 0.13

Best 0.02 0.05 0.02 0.02 0.05

Ionosphere

Mean 0.12 0.16 0.11 0.12 0.17
Median 0.11 0.16 0.11 0.11 0.17

Best 0.06 0.08 0.05 0.05 0.07

Credit Approval

Mean 0.21 0.17 0.20 0.21 0.17
Median 0.18 0.16 0.16 0.17 0.15

Best 0.13 0.13 0.13 0.13 0.12

Banknote Authentication

Mean 0.03 0.02 0.03 0.03 0.03
Median 0.03 0.02 0.03 0.03 0.02

Best 0.003 0.00 0.01 0.00 0.00

Image Segmentation

Mean 0.60 0.51 0.60 0.60 0.52
Median 0.61 0.48 0.60 0.60 0.49

Best 0.45 0.36 0.55 0.45 0.37

Heart Disease

Mean 0.44 0.43 0.63 0.44 0.43
Median 0.46 0.45 0.69 0.46 0.47

Best 0.30 0.18 0.15 0.26 0.20

Liver Disorder

Mean 0.36 0.32 0.37 0.36 0.33
Median 0.37 0.31 0.37 0.37 0.32

Best 0.28 0.26 0.27 0.26 0.27

Balance Sclae

Mean 0.44 0.43 0.64 0.44 0.43
Median 0.46 0.45 0.69 0.46 0.47

Best 0.30 0.19 0.15 0.26 0.20

*Bold numbers are the lowest



13

4.3. Symbolic regression problems

For the symbolic regression problems, we included five test problems (described in table 8).
All GP systems were guided to minimise the mean of absolute errors. Furthermore, all GP
systems received the same functions-primitive sets in table 7. To guide the evolutionary
process, a training set of 200 samples was randomly generated from the closed interval
[−5, 5]. In addition, a validation and testing sets of 100 and 500 samples, respectively,
were randomly generated from same set interval. In this problem, we used weighted KNN
to predict the trees outputs when evaluating unseen instances from the training set. The
KNN’s prediction was calculated as follows:

ŷ =

N∑
i=1

1

wi
× TreeOutput(xi)

where wi is the euclidean distance between unseen point and the ith nearest neighbour.
Figure 3 summarise the CPU execution time of 5000 GP runs (for the training process).

Each GP system tried to evolve approximation for each target function in 200 indepen-
dent runs. The figures report the mean, median, and best solution across the whole 200
runs. As can be seen from the figures, SSGP achieved the lowest mean in all runs and the
best median in 3 out of 5 problems. Similar to the classification problem, we verified the
significance of the results using a non-parametric Friedman statistical tests (presented in
table 9). Clearly, SSGP achieved the lowest rank in 4 out of 5 test problems however the
significance level was more than 10%.

Now, if we compare the performance of the five GP systems in terms of approximation
error (presented in table 10), similar to the classification problem, all GP systems evolved
nearly similar solutions. The differences are marginal in all test problems. However, the
differences of performance in problems F4 and F5 is larger than the other three problems.
Furthermore, in table 11, we presented the results of the Friedman statistical test to com-
pare the quality of performance. As can be seen, there is no single algorithm achieved
the lowest rank consistently across all problems. Standard GP was statistically better than
other algorithms in 2 out of 5 problems (i.e., F4 and F5).

Generally, SSGP may show poor performance in regression problems than other GP
systems. One reason may be the complexity of the landscape in some regression problems
makes the KNN predictions misleading and thus SSGP may produce inferior solutions than
other systems.
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Table 6. Friedman statistical test to compare
performance. the last column shows P-value
of all system against the system with the low-
est rank.

Rank Algorithm P-Value

Breast Cancer - Lowest Rank: SteadyGP

4 RT-GP 2.38E-21
3 SGP 1.20E-14
2 SSGP 0.01
1 DT-GP 0.88

Cardiotocography - Lowest Rank: SGP

4 SteadyGP 1.25E-43
3 SSGP 0.051
2 DT-GP 0.31
1 RT-GP 0.41

Ionosphere - Lowest Rank: SteadyGP

4 RT-GP 3.48E-34
3 SGP 3.86E-31
2 DT-GP 0.07
1 SSGP 0.10

Credit Approval - Lowest Rank: SGP

4 DT-GP 7.71E-10
3 SSGP 5.93E-9
2 SteadyGP 3.74E-4
1 RT-GP 0.89

Banknote - Lowest Rank: SGP

4 SSGP 1.17E-11
3 RT-GP 2.76E-7
2 DT-GP 4.20E-7
1 SteadyGP 4.20E-6

Image Segmentation - Lowest Rank: SGP

4 SteadyGP 8.326E-70
3 SSGP 1.17E-16
2 DT-GP 2.60E-16
1 RT-GP 0.22

Heart Disease - Lowest Rank: SGP

4 SteadyGP 2.43E-43
3 DT-GP 0.009
2 RT-GP 0.01
1 SSGP 0.03

Liver Disorder - Lowest Rank: SGP

4 SteadyGP 1.53E-14
3 SSGP 7.91E-13
2 DT-GP 2.77E-12
1 RT-GP 0.04

Liver Disorder - Lowest Rank: SteadyGP

4 SSGP 6.00E-32
3 RT-GP 2.61E-20
2 SGP 1.17E-16
1 DT-GP 3.43E-15
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Table 7. GP systems function-primitive sets
for symbolic regression problems.

Function set +, -, /, *, pow, square root
Constants 10 constants from [1, 10]

Table 8. Symbolic regression problems

F1 : f(x1, x2) =
e−(x1−1)2

1.2+(x2−2.5)2
F2 : f(x1, x2, x3, x4, x5) =

10
5+

∑5
i=1(xi−3)2

F3 : f(x1, x2) = 6sin(x1)cos(x2) F4 : f(x1, x2, x3, x4, x5) = x1x2x3x4x5

F5 : f(x1, x2, x3, x4, x5) = 32− 3
tan(x1)
tan(x2)

tan(x3)
tan(x4)

Table 9. Friedman statistical test to compare execution times. Bold num-
bers are the lowest ranks and last column shows P-value of all system
against the system with the lowest rank. We used the notation < and > to
show whether the GP system with the lowest rank is statistically signifi-
cant than all other GP systems at 5% or 10% significance level.

SSGP SGP SteadyGP DT-GP RT-GP P-Value

F1 2.02 4.775 2.66 1.86 3.685 > 0.1
F2 1.525 5.00 3.47 1.62 3.38 > 0.1
F3 1.535 4.85 3.70 1.60 3.31 > 0.1
F4 1.52 4.85 3.91 1.69 3.02 > 0.1
F5 1.495 4.85 3.90 1.60 3.14 > 0.1
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Table 9. Symbolic regression problems

F1 : f(x1, x2) = e�(x1�1)2

1.2+(x2�2.5)2
F2 : f(x1, x2, x3, x4, x5) = 10

5+
P5

i=1(xi�3)2

F3 : f(x1, x2) = 6sin(x1)cos(x2) F4 : f(x1, x2, x3, x4, x5) = x1x2x3x4x5

F5 : f(x1, x2, x3, x4, x5) = 32 � 3
tan(x1)
tan(x2)

tan(x3)
tan(x4)

Table 10. Summary of CPU execution time of 750 independent GP runs. Results are collected from (30) independent
runs for each GP system. Numbers represent the execution time in seconds.

Figure 3. Summary of CPU execution time of 750 independent GP runs. Results are collected from (30) inde-
pendent runs for each GP system. Numbers represent the execution time in seconds. This time is for the GP
training phase.
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Table 10. Summary of approximation errors of 5000 independent GP runs.
Each system was tested through 200 independent runs. Results shows the
mean of absolute errors. Bold numbers are the lowest.

SSGP SGP SteadyGP DT-GP RT-GP

F1

Mean 0.07 0.06 4.77 0.06 0.06
Median 0.05 0.05 0.05 0.05 0.05

Best 0.02 0.01 0.01 0.02 0.02

F2

Mean 0.14 0.08 0.07 0.07 0.09
Median 0.06 0.08 0.05 0.06 0.09

Best 0.03 0.02 0.03 0.02 0.04

F3

Mean 2.31 2.62 2.39 2.34 2.57
Median 2.28 2.36 2.30 2.29 2.38

Best 2.03 1.70 1.46 1.78 1.90

F4

Mean 76.08 44.14 69.78 76.19 66.61
Median 74.54 1.86 63.98 74.14 103.88

Best 34.46 2.741E-05 0.33 0.44 2.75E-05

F5

Mean 87.43 58.13 82.22 88.02 77.94
Median 74.54 2.53 64.62 74.29 103.88

Best 34.45 2.74E-05 26.50 29.57 2.75E − 05
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Table 11. Friedman statistical test
to compare performance. the last
column shows P-value of all system
against the system with the lowest
rank.

Rank Algorithm P-Value

F1 - Lowest Rank: DT-GP

4 SteadyGP 0.009
3 SSGP 0.282
2 RT-GP 0.319
1 SGP 0.527

F2 - Lowest Rank: SteadyGP

4 RT-GP 8.91E-35
3 SGP 1.11E-21
2 DT-GP 0.13
1 SSGP 0.164

F3 - Lowest Rank: DT-GP

4 RT-GP 5.01E-16
3 SGP 2.22E-14
2 SteadyGP 0.29
1 SSGP 0.83

F4 - Lowest Rank: SGP

4 DT-GP 8.46E-12
3 RT-GP 3.68E-9
2 SSGP 5.39E-9
1 SteadyGP 8.77E-7

F5 - Lowest Rank: SGP

4 SSGP 5.16E-10
3 DT-GP 4.90E-9
2 SteadySGP 8.24E-6
1 RT-GP 1.96E-5
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4.4. Time-series forecasting problems

For the time-series forecasting problems, we used data from Google Trends service [8].
Google Trends is a free service provided by Google offering data about the search terms
that people entered into Google search engine. The service provides free downloadable
historical time-series data about any keyword. It, also, offers the flexibility to restrict
the search by country. One of the uses of Google Trends is for E-Marketing managers to
monitor the internet to see how often people type certain keywords related to their products
at different times over the year. Using this information, E-Marketing managers can decide
the best time to release their marketing campaigns so their advertisements coincide with
people’s searchers and eventually achieve higher hit rates.

For the purpose of our experiments, we imported time-series data about people’s searches
for the keywords; Jobs, Holidays, and Cinema and we restricted the search to get data
from UK, USA and USA, respectively. All imported data from Google Trends represent the
weekly frequencies of searches of the keywords mentioned above in Google since January
2004 until December 2014. There are 571 data points.

All GP systems received the 5 points (under a sliding window of size 5 and moving
steps of size 1) from xi to xi+5 and asked to predict point xi+6. All GP systems received
primitive-function sets presented in table 3. Time-series data were divided in three disjoint
sets (25% training, 25% validation, and 50% testing). The evolutionary process guided to
minimise the mean of absolute errors. The weighted KNN was used as described in the
previous sub-section.

Following the same style as the previous sub-section of presenting the results. First we
summarise the CPU execution times of 3000 GP runs (for the training process). Figure 4
shows that SSGP has the lowest execution time in terms of mean, median in all problems.
Friedman statistical test shows that SSGP is statistically significant than the other four GP
systems at 5% significance level.

For the forecast errors, presented in table 13, clearly there is no single algorithm domi-
nate all other algorithms in any problem. Moreover, errors are very close. To further verify
this, table 14 presents Friedman statistical test. SGP achieved the lowest rank in all test
problems. However, the p-value is larger than 5% statistical significance level in most of
the cases.

From the previous results, it can be concluded that SSGP is faster than other GP systems
and it’s results is not too far from other competitive systems. This confirms that SSGP has
the added value of evolving good solutions in lower time than other existing techniques.

4.5. Discussion

4.5.1. KNN Added Value SSGP achieves it’s fast CPU execution time due to two main
components. First we use simple linear equation to control the size of the training sub-set
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Table 6. Summary of CPU execution time of 3000 independent GP runs. Results are collected from (200) indepen-
dent runs for each GP system. Numbers represent the execution time in seconds.

Table 7. Friedman statistical test to compare execution times. Bold numbers are the
lowest ranks and last column shows P-value of all system against the system with the
lowest rank. We used the notation < and > to show whether the GP system with the
lowest rank is statistically significant than all other GP systems at 5% or 10% signifi-
cance level.

SSGP SGP SteadySGP DT-GP RT-GP P-Value

Holidays - USA 1.195 4.91 3.23 2.28 3.38 < 0.05
Cinema - USA 1.195 4.85 3.53 2.18 3.24 < 0.05

Jobs- UK 1.305 4.91 2.85 2.3 3.63 < 0.05

Figure 4. Summary of CPU execution time of 3000 independent GP runs. Results are collected from (200)
independent runs for each GP system. Numbers represent the execution time in seconds.This time is for the GP
training phase.

Table 12. Friedman statistical test to compare execution times. Bold numbers are the
lowest ranks and last column shows P-value of all system against the system with the
lowest rank. We used the notation < and > to show whether the GP system with
the lowest rank is statistically significant than all other GP systems at 5% or 10%
significance level.

SSGP SGP SteadyGP DT-GP RT-GP P-Value

Holidays - USA 1.195 4.91 3.23 2.28 3.38 < 0.05
Cinema - USA 1.195 4.85 3.53 2.18 3.24 < 0.05

Jobs- UK 1.305 4.91 2.85 2.3 3.63 < 0.05
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Table 13. Summary of forecast errors of 3000 independent GP
runs. Each system was tested through 200 independent runs. Re-
sults shows the mean of absolute errors. Bold numbers are the
lowest.

SSGP SGP SteadyGP DT-GP RT-GP

Holidays - USA

Mean 5.04 5.55 5.28 5.10 5.01
Median 4.93 4.93 4.93 4.93 4.93

Best 4.41 3.96 4.15 4.46 4.32

Cinema - USA

Mean 6.45 6.30 6.39 6.40 10.09
Median 6.49 5.98 6.36 6.35 6.23

Best 6.01 5.53 5.53 5.85 5.70

Jobs - UK

Mean 3.43 3.58 3.45 3.45 3.44
Median 3.46 3.46 3.46 3.46 3.46

Best 3.25 3.22 3.24 3.25 3.22

Table 14. Friedman statistical test
to compare performance. the last
column shows P-value of all sys-
tem against the system with the
lowest rank.

Rank Algorithm P-Value

Holidays - Lowest Rank: SGP

4 DT-GP 0.24
3 SSGP 0.429
2 SGP 0.86
1 RT-GP 0.98

Jobs - Lowest Rank: SGP

4 DT-GP 1.11E-6
3 SteadyGP 7.72E-5
2 SSGP 0.001
1 RT-GP 0.17

Holidays - Lowest Rank: SGP

4 SSGP 1.51E-35
3 DT-GP 8.41E-19
2 SteadyGP 2.69E-17
1 RT-GP 8.52E-10
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(see Algorithm 1 for more details). This allows SSGP to dynamically change the training
sub-set size based on the status of the search. However, this component by itself is not
enough to fully accelerate the evolutionary process. As we have seen in the previous three
sub-sections, SSGP is faster than DT-GP in most test cases. Note that DT-GP is similar
to SSGP with the only exception that it does not use KNN to predict trees’ outputs. DT-
GP infers the fitness directly from the training sub-set (similar to RT-GP). The second
component that strongly supports the first component is KNN surrogate which is used to
predict the full trees’ semantic representation based on the evaluated sub-set. Naturally,
KNN predictions are not totally error free. However, we believe that the errors produced
by the KNN help to smooth a rugged search space in most cases. As illustrated in figure
6, we compared the size of the training sub-set between DT-GP and SSGP generation-by-
generation (data in the figures are averaged over 200 independent runs for each system).
In the top two charts in figure 6 (i.e., Breast Cancer and Cardiotocography), the size of the
sub-set drops quickly in SSGP. This is because, as described in Algorithm 1, when there
is no improvement in the fitness for 20 consecutive generations the size of the sub-set will
drop gradually at different steps within 5% from its initial size. Note that SSGP were faster
than DT-GP in these two test problems (see table 2). Here, the KNN has helped to smooth
the search space where solutions in SSGP reached a local optimum quickly. Interestingly,
the quality of solutions located in the local optimum (in the SSGP search space) are not
too far from the original search space where GP trees are evaluated directly without KNN
support (which indicate that the KNN predictions are not too noisy). In the bottom chart in
figure 6 (i.e., entitled Image segmentation), the size of the sub-set drops quicker in DT-GP.
This is an indication that the SSGP requires longer time to reach the local optimum of the
search space in this particular problem.

Overall, we believe that the differences in SSGP CPU execution times in different test
problems is largely attributed to the ability of the KNN to smooth the search space (see
[22]). Figure 5 shows the predictions of KNN for fitness cases versus the true trees’ outputs
(for Holidays time-series forecasting problem). The data on the scatter plot take a linear
shape which indicate that KNN predictions and not largely deviated from the true outputs.
The coefficient correlation between KNN predictions and true trees’ outputs is around 0.60,
in this particular problem. Naturally, KNN predictions’ accuracy increases as the size of
the Tsub increases.

To understand different aspects of SSGP we also compared the average trees sizes
generation-by-generation in all GP systems (averaged from 200 runs for each GP sys-
tem). Illustrated in figure 7 the average trees size in three classification problems. Namely,
Breast Cancer problem, Credit Approval problem and, Image Segmentation problem (av-
erage tree sizes of other test problems are not shown here, but the GP systems’ behaviour
is almost consistent in all test problems). Generally, SSGP and DT-GP produce the small-
est growth in tree sizes among all GP systems in the comparison. Both SGP and RT-GP
showing consistent behaviour and their average tree sizes are the highest in all problems.
Finally, for steadyGP, its trees growth fall in between the two groups (i.e, SSGP & DT-GP
and SGP & RT-GP). We artificially capped trees to be no more than 150 nodes prevent
programs bloating.

Moreover, in the same line of understanding different aspects of SSGP, we provided
a sensitivity analysis to fine the best value of k in the KNN algorithm. Figure 8 shows
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Figure 5. Scatter plot shows KNN predictions of fitness cases vs. trees’ true outputs for Holidays time-series
problem. The x-axis is the true outputs and the y-axis is the predicted outputs.

Figure 6. A comparison of training sub-set sizes (generation-by-generation) between DT-GP and SSGP. The
figures shows three classification. Top left the Breast Cancer problem, top right the Cardiotocography problem
and at the bottom the Image Segmentation problem.

SSGP performance in the Credit Approval classification problem under different values of
k. Clearly the system prefers larger values of k to support the KNN predictions. We tested
the system with different values of k (from 2 to 10).

In the current realisation, the implementation of the KNN is based on Euclidean dis-
tances which may suffer to produce good approximations in high-dimensional spaces. To
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Figure 7. A comparison of average population size (generation-by-generation) between DT-GP and SSGP. The
figures shows three classification. Top left the Breast Cancer problem, top right fitness the Credit Approval
problem and at the bottom the Image Segmentation problem.
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Figure 8. KNN sensitivity test to show the performance with different values of K. For each K value we tested
the system 20 different times and reported the mean and median. The test problem was in Credit Approval
classification problem.
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Figure 9. Heat map shows the prediction errors produced by KNN under different number of dimensions. Func-
tion F2 (see table 8) was used with different number of dimensions for this analysis to illustrate KNN performance
when the dimensionality of the problem increases. The X-Axis shows the KNN prediction for 10, 200, 500, and
1000 variables. This test was done using 2575 test cases with 100 different trees randomly generated. The colour
indicate the value of the absolute error of KNN prediction.

further check this, in figure 9, we used function F2 (see table 8) with different number of
variables (or dimensions). Namely, 10, 200, 500, and 1000 variables. We noticed when
the number of variables increases the KNN makes poor predictions. This is was expected
because as the dimensionality increases the Euclidean distance between any two points in
the Cartesian space becomes obsolete.

4.5.2. Computational Saving In this section, we will try to quantify the computational
saving in SSGP against canonical GP. In GP, let the computational cost of a single run
calculated in terms of time units denoted as tu.

GP tu =
∑

(treeSizegi × |T |)

where treeSizei is the size of the ith tree in the gth generation, and |T | is the size of the
training set. Hence, the computational cost of canonical GP can be quantified by three
parameters: i) the total number of trees (i.e., population size × number of generations),
ii) the size of each tree, and iii) the size of the training set. Now, when we compare this
against SSGP:

SSGP tu =
∑

([treegi × treeSizei × |Tsub|] +KKN(|UnEvaluated|))

where |Tsub| is sub-training set and KKN(|UnEvaluated|) is the KNN cost when eval-
uating the difference set between |Tsub| and |T | where |Tsub| < |T |. Note that the cost of
KNN is fixed and independent of the tree size. Therefore, as illustrated in the empirical
results (see Sections 4.4, 4.2, and 4.3), SSGP tu < GP tu specially when the variables
treeSizei become larger as the search progress.

5. Concluding Remarks and Future Work

This paper proposed a new approach to apply surrogate modelling in GP with expression-
tree representation. The new approach saves fitness evaluations through the use of two
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components. The first component is surrogate model that predicts trees output for a par-
ticular input vector xi based on the similarity between xi and other input vectors in the
training set for which the candidate solution has been already evaluated with. The second
component, is a simple linear equation to control the size of a sub-training set that is used
to train GP trees. This linear equation allows the size of the sub-training set to dynamically
increase or decrease based on the status of the search. The new approach is referred to as
SSGP. SSGP allows the GP system to evaluate trees (using a sub-set of training set) and
use these as a training set to build a local surrogate model based on KNN. The KNN is used
to predict each tree’s outputs vector (i.e., semantics) for the remaining unevaluated fitness
cases. We have uploaded SSGP code in a public domain so other interested researchers
may use the system and compare it with other systems 2.

Among all results reported in the previous sections, the take home message we wish to
convey is that SSGP can systematically deliver generalisation performance that is com-
petitive to that of a wide range of GP systems, but SSGP achieves it much faster than its
competitors. As an extra advantage, the proposed method for surrogate modelling is very
simple to implement and experiment with.

On the other hand, the system’s disadvantages are as follows. Currently, SSGP may only
be applied on problems with specific search space properties. In particular, each individual
should produce one and only one vector value for each input (that is, a given vector of
inputs will produce another vector as output). This restriction excludes problems where
the GP trees are used directly as programs, like Artificial Ant, or where the produced
output is not numeric or vector-like. Another disadvantage of SSGP is that the KNN is
based on Euclidean distances which may suffer to produce good approximations in high-
dimensional spaces.

For future work, we wish to investigate the following:

• Methods for SSGP to maintain semantic diversity.

• Use of SSGP in Novelty search [14].

• Compare different surrogate models other than KNN in order to predict a program’s
output vector.

Notes

1. The KNN surrogate has been used to guide the evolution when evaluating the training set only. The evaluation
of the validation set was done in the standard way.

2. www.ahmedkattan.com/SSGPcode.zip
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