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Abstract

Many semantic search based on Genetic Programming (GP) use a trial-and-error scheme
to attain semantically diverse offspring in the evolutionary search. This results in sig-
nificant impediments on the success of semantic-based GP in solving real world prob-
lems, due to the additional computational overheads incurred. This paper proposes
a surrogate Genetic Programming (or sGP in short) to retain the appeal of semantic-
based evolutionary search for handling challenging problems with enhanced efficiency.
The proposed sGP divides the population into two parts (µ and λ) then it evolves µ per-
centage of the population using standard GP search operators, while the remaining λ
percentage of the population are evolved with the aid of meta-models (or approxima-
tion models) that serve as surrogate to the original objective function evaluation (which
is computationally intensive). In contrast to previous works, two forms of meta-models
are introduced in this study to make the idea of using surrogate in GP search feasible
and successful. The first denotes a “Semantic-model” for prototyping the semantic rep-
resentation space of the GP trees (genotype/syntactic-space). The second is a “Fitness-
model”, which maps solutions in the semantic space to the objective or fitness space.
By exploiting the two meta-models collectively in serving as a surrogate that replaces
the original problem landscape of the GP search process, more cost-effective generation
of offspring that guides the search in exploring regions where high quality solutions re-
sides can then be attained. Experimental studies covering three separate GP domains,
namely, 1) Symbolic regression, 2) Even n-parity bit, and 3) a real-world Time-series
forecasting problem domain involving three datasets, demonstrate that sGP is capable
of attaining reliable, high quality, and efficient performance under a limited computa-
tional budget. Results also showed that sGP outperformed the standard GP, GP based
on random training-set technique, and GP based on conventional data-centric objec-
tives as surrogate.
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1. Introduction

Evolutionary algorithms (EAs) are approaches that take their inspirations from the
principles of natural selection and survival of the fittest in the biological kingdom.
Among the many variants of EAs, Genetic Programming (GP) is among one of those
that have withstood the realms of time with success stories reported in a plethora of
real-world applications. In particular, GP has been deemed as capable of providing
transparency into how decisions or solutions are made. While a technique to evolve
trees was suggested by Cramer in 1985 [6], the field of GP was founded by John Koza
in 1992 [16]. GP is a powerful learning engine inspired by biology and natural evo-
lution, for automatically generating working computer programs. Based on Darwins
theory of evolution, computer programs are measured against the task they are intended
to do and then receive scores accordingly. The programs with the highest scores are
considered the fittest. The fittest programs are selected to join the evolutionary pro-
cess via three standard genetic operators: crossover, mutation and reproduction. These
operators aim to amend the programs structure and create new offspring, which will
hopefully be better. Computer programs are treated as a collection of functions and
inputs for these functions; which can be seen as their genetic material. In the standard
representations of GP, programs are represented as trees where the functions appear in
the internal nodes of the tree and the inputs for the functions appear on the leaves. This
representation flexibility adds an extra advantage to the GP since it can solve complex
problems and even comes up with solutions beyond human thoughts in some cases.

In GP, the search space can be viewed from multiple facets; A) Structural space or
Syntactic space or Genotype in which most GP systems operate on, in attempting to
evolve/alter the trees, via the genetic operators, hoping to find better ones that translate
to desirable behaviours, B) Phenotype or Semantic space where GP systems try to alter
the behaviours of the programs directly, and finally, C) Fitness space where individuals
are evaluated into numerics that quantify the quality in relation to solving the given
problem. In general, it is common for the semantic space of GP to be represented in
the form of real number vectors and are defined by the outputs of GP trees when their
instructions (or functions) are executed.

In traditional GP, although remarkable success on different real-world problems
have been achieved (e.g., [36], [14]), existing systems operate fundamentally within
the syntactic space, ignoring the semantic information of the candidate GP trees or
programs. Advancing studies on semantic GP have highlighted the potentials of using
the semantic information within the search. In particular, incorporations on seman-
tic information of candidate solutions into the GP evolutionary process have recently
been reported to generate significant enhancements in the search performances ([33],
[4], [26]). Generally, the term semantic refers to the chromosomes or individuals’ be-
haviour (for example, represented in the form of a real-valued vector), while syntactic
refers to the structure of the evolved program. In most real-world applications, if not
all, there is no obvious relationship between the syntactic space and semantic space.
Thus, small changes in the shape of a tree can result in a significant departure in the
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resultant behaviour and vice-versa, any small deviations requested in the program be-
haviour (or semantic) would need major variations in the tree structure. Due to the
complex structure of GP in the syntactic space, i.e., tree-like structure representation,
it is hard to identify a suitable syntactic distance measure that correlates well with the
fitness landscape. In other words, it is hard to define a distance (or similarity mea-
sure) that quantifies the structural similarities between two trees and at the same time
quantifies the similarities between their fitness values. Even if such distance measure
is available, it is mostly problem-dependent. Generally, it is often deemed easier to
determine the distance that correlates fitness landscape between individuals’ semantics
(where semantics represented as vectors of real numbers) than between individuals’
syntactic (i.e., tree-like structure representation). This is because it is easier to use
a generic distance metrics that applies across problem domains between vectors than
trees. For these reasons, it is often argued that the semantic space is easier to search
upon, than the syntactic space.

Despite the increasing research interests and potentials of semantic GP, one of the
main criticism has been on the excessive slow nature of the approach, attributed not
only to the natural mechanisms of evolution which involves an iterative process of
candidate solutions that evolves across many generations, but more importantly, the
trial-and-error scheme used to facilitate semantically diverse offspring in the search
have led to significant increase in the computational resources needed before conver-
gence to credible and reliable results can be attained. In this work, our interest is to
retain the appeal of GP algorithms, especially semantic GP, that can handle challenging
problems with high quality designs at enhanced computational efficiency.

We present a study on surrogate Genetic Programming or sGP in short. The core
characteristics and motivations for proposing the sGP can be summarised as follows:
1) Present Semantic GPs heavily follow a trial-and-error scheme [25][34][11], which
led to highly computationally intensive search. 2) It is desirable to conduct a search
using Semantic GPs for high quality solutions under a limited computational budget, 3)
It is non-trivial to map from syntactic to the semantic space [25]. Particularly, in con-
trast to previous studies on semantic based operators, where efforts have been placed
on exploiting individuals’ behaviour to maintain semantic diversity in the search pop-
ulation, our study on sGP in this paper differs in the use of meta-models for exploring
the semantic space, so as to enhance search efficiency through eliminating the need to
evaluate each computationally intensive candidate solutions completely.

The proposed model of sGP divides the population into two parts µ and λ then
it evolves µ portion of the population using standard search operators and the original
objective function, while the remaining λ population via the surrogate. On the λ portion
of the population, sGP uses two forms of meta-models, namely the “semantic-model”
and “fitness-model” as the surrogate that aids in the GP search. The semantic-model
prototypes the semantic space of the GP trees (genotype/syntactic-space), while the
fitness-model maps the semantic space to the fitness space (more details are given in
Section 3). In order to construct the semantic space, it is generally necessary to evaluate
the GP programs completely. But this is often deemed as computationally intensive
and impractical for many real-world complex applications. By using the semantic-
model, on the other hand, solution individuals only need to be partially evaluated and
the complete behaviours of the GP trees (i.e., fitness value) is then predicted via the
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fitness-model. The semantic and fitness-models thus serve as a partial replacement or
surrogate of the computationally expensive objective function in semantic GP, leading
to enhanced search efficiency. As will be shown in the results section, sGP is capable
of achieving good solutions with smaller numbers of function evaluations.

In summary, the contributions of this paper is fourfold: 1) to the best of our knowl-
edge, this is the first successful attempt to apply surrogate model to Semantic GP
with tree-like representation, 2) we introduce the notion of semantic-model and fitness-
model as surrogate, 3) the use of surrogate model to approximate the semantic search
space allows generalisation to a metric space that is non problem-dependent, and last
but not least 4) an efficient form of Semantic-aware GP is presented, labelled here as
Surrogate GP (or sGP).

The remainder of this papers is organised as follows: Section 2 presents some re-
lated works, while Section 3 describes sGP in details, Section 4 presents the results of
empirical studies on the proposed framework, and finally Section 5 gives some conclu-
sive remarks and discusses potential directions of future work.

2. Related Work

In this section, the related works on semantic aware operator in GP and a brief
review of surrogate modelling in evolutionary computation are presented.

2.1. Semantic Aware Operators

Beadle and Johnson proposed semantic driven crossover and mutation for boolean
problems in [4] and [3]. The key idea is to allow search operators to alter the behaviour
of offspring programs. To this end, the proposed operators transform the parents and
offspring programs to a reduced ordered binary decision diagrams (ROBDDs) repre-
sentation for the purpose of identifying the semantic equivalence between programs.
Parent and offspring are considered semantically equivalent if and only if they have
the same ROBDD. Operators that produce semantically equivalent offspring to their
parents are then eliminated, thus reducing the number of calls to the objective function.
Although, the idea of transforming individuals to ROBDD representation is an inter-
esting way to reduce the computational costs of evaluating individuals, the approach
can only apply to boolean problems.

In [33] Uy et. al. proposed a semantic aware crossover operator for real-valued
symbolic regression problems. In their work, the authors proposed four different sce-
narios to apply the new operator. In the first scenario, the crossover is applied if the
two sub-trees (to be exchanged in the crossover operator) are semantically inequiva-
lent. The logic behind this concept is to maintain a certain level of semantic diversity
in the population. In the second scenario, the crossover is applied if the two sub-trees
(to be exchanged) are semantically equivalent. In the third scenario, the semantics of
offspring are compared against their parents and inserted into the new generation if and
only if they are not equivalent to their parents, otherwise the parents will survive to the
next generation. The fourth scenario is the reverse of the third scenario, wherein off-
spring survive into the next generation if and only if they are semantically equivalent
to their parents. Experimental results show that only the first suggested scenario led
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to improved performance semantic GP. In [26], the same authors extended their work
where the Semantic Aware Mutation (SAM) and Semantic Similarity Mutation (SSM)
are proposed. In SAM, the semantic equivalence (or semantic distance) of the original
sub-tree and the newly generated sub-tree (in the mutation operator) is determined by
comparing the absolute difference of their behaviours on a set of random points in the
domain. If the behaviours of the two sub-trees on the set is close enough (subjected to
a parameter known as semantic sensitivity), they are designated as semantically equiv-
alent. SSM compares the semantic similarity between sub-trees (the original and the
newly generated) rather than complete semantic equivalence. Then, the semantic sim-
ilarity of the two sub-trees is checked by comparing them to a set of random points
in the domain. If the absolute difference between the behaviours of these sub-trees in
the set fulfils some predefined threshold, they are considered as semantically similar,
hence mutation proceeds. Otherwise, the system selects a new mutation point and ran-
domly generates a new sub-tree. This loop iterates until it has reached the maximum
number of trials defined. Recently, Moraglio et. al. [25] also proposed the Geometric
Semantic GP (GSGP). The theory states that geometric crossover with regard to the
metric d (metric d is any distance measure used by the representation), will result in
offspring in the metric segment between parents. In geometric mutation with regard
to the metric d the result offspring will fall within the ball of radius ε centred at the
parent. The authors claim that semantic landscapes are always spherical, which help
GP to identify superior solutions.

In spite of the increasing interest in semantic GP, it is worth noting that none of the
previous works have considered the use of surrogate model to approximate the semantic
space as means of speeding up the search on computationally expensive problems. In
this paper we take semantic aware operators one further step and explore the potential
benefits of semantic and fitness models as surrogate of the computational intensive
objective function in GP. The results of this research is a new Surrogate GP that is
capable of achieving good solutions with a smaller evaluation incurred.

2.2. Surrogate Modelling
Surrogate models (SMs) used in evolutionary frameworks, typically known as re-

sponse surface models or meta-models, are approximation models that mimic the be-
haviour of the simulation model as closely as possible while being fast surrogates for
time-consuming objective functions. In a nutshell, SMs work by running simulations at
a set of points and fitting response surfaces to the resulting input-output data. To date,
many data centric approximation methodologies used to construct surrogates. These
include the polynomial regression, support vector machines, artificial neural networks,
radial basis functions, Gaussian process [17, 35, 40, 30, 21] and surrogate ensembles
[37, 10, 1, 39] are among the most commonly investigated [12, 19].

The general consensus on surrogate-assisted evolutionary frameworks is that the ef-
ficiency of the search process can be improved by replacing, as often as possible, calls
to the costly objective functions, with surrogates that are deemed to be less costly to
build and compute. In this manner, the overall computational burden of the evolution-
ary search can be greatly reduced, since the effort required to build the surrogates and
to use them is much lower than those in the traditional approach that directly couples
the evolutionary algorithm (EA) with the costly objective functions [8, 32, 27, 12, 31].
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Early approaches have focused on building global surrogates [32] that attempt to
model the complete problem fitness landscape. However, due to the effects of the
curse of dimensionality [7], many have turned to local surrogate models [9, 28] or their
synergies [39, 38] or ensembles. The use of domain knowledge including gradient
information and physics-based models [15, 20] to improve the prediction accuracy of
the surrogates have also been considered. The use of more than one surrogate, for
example ensemble and smoothing surrogate models, and with preference for surrogates
that generate search improvements over prediction accuracy was also considered in
both single and multi-objective optimisation [18].

In principle, present surrogate models used are implicitly or explicitly spatial meta-
models, as their predictions involve exploiting some assumed spatial smoothness or
continuity between the values of the objective function at a query point whose value is
unknown and has to be predicted based on the known solutions in the search space. This
makes objective meta-models naturally suited to continuous function optimisation. As
such, the plethora of research studies that incorporate SMs to speedup evolutionary
search on computationally expensive problems were made on problems involving con-
tinuous or real-valued variables. Particularly, if the input variables are real-valued, the
simple Euclidean distance can be readily used. When the defined distance-measure
correlates well with the fitness landscape, the meta-model is generally capable of ap-
proximating the search space. However, if the distance-measure just quantifies struc-
tural differences between solutions without consideration of their fitness values, then
using the surrogate can mislead the search process since they may not approximate the
search space well.

To the best of our knowledge, no works in the literature have successfully defined
surrogate models on complex representations, such as the GP tree-like representation,
other than real-valued vectors. When dealing with complex representation like the
GP tree-like representation, there is no general distance measure that correlates the
fitness landscape for all problems, hence surrogate models cannot be easily used in GP
search. Therefore, for search problems naturally based on structured representations,
surrogate models can be used only after transforming the original representation to
real-valued vector form. This introduces extra non-linearity in the target expensive
objective function, results in making it harder to learn, and consequently requiring
more expensive samples to approximate it well enough to locate its optimum. In [24],
an attempt was presented to apply RBFN surrogate model on GP, but it was concluded
that the results reported were not significantly different from those obtained by standard
GP systems. In this paper we present a new framework that incorporates surrogate
models to the GP tree-like representation successfully in Semantic GP. The proposed
framework introduces the notion of semantic-model and fitness-model as the surrogate
that maps the syntactic space to semantic space and then from the semantic space into
fitness space, respectively. Further details are presented next.

3. sGP

As mentioned previously, sGP divides the population into two parts. We use the
notation µ to denote the percentage of the population that will evolve using standard
GP search (i.e., based on the original objective function evaluation) and λ to denote
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Figure 1: “Semantic model” serves to map a solution individual from the structural space S to semantic
space V (i.e., S → V where it models the function F (Treei, Xsub) = yi

sub to produce a prediction of
the Treei’s semantic output based on the complete datasetX in the form ŷi = F̂(Treei,X)) and then the
“Fitness model” maps the solution individual in semantic space V to the fitness space F (i.e., V → S where
it models the function F (ŷi) = ˆfitnessi).

the remaining percentage of the population that will evolve using the surrogate. To this
end, in sGP, µ+ λ = 1.

Similar to standard GP systems, sGP begins with the initialisation of a random
population and evaluates the µ part of the population using the original objective func-
tion f(Treei, X), X = {(xj)|j = 1, ...,n} to arrive at the corresponding exact fitness
value fitnessi. Here, X is the set of training cases used to calculate the fitness. All
non-duplicate individuals in the µ part of the population and their associated exact fit-
ness values of f(Treei, X) obtained during the search are archived in a centralised
database D (we will explain the use of this database later in section 3.3).

3.1. Surrogate Building

In this work, we used Radial Basis Functions Network (RBFN) as the approxima-
tion methodology for surrogate modelling [5] due to its well-established effectiveness
and ease of implementations. However, in principle, any surrogate model can be used
in this framework. As mentioned previously, in the proposed sGP, two forms of surro-
gate within the (λ) sGP evolution. We will call the two surrogates, 1) semantic RBFN
model, and 2) fitness RBFN model (both act as replacement of the original computa-
tionally expensive problem space), as depicted in Figures 1 and 2. Naturally, the (λ)
sGP portion of the evolutionary search is computationally cheaper than the original
problem since it is guided by computationally cheap surrogates instead of the prob-
lem’s original fitness measure.

As illustrated in Figure 1, if the structural space, semantic space and fitness space
is S, V and F , respectively, the semantic-model approximates the Treei input-output
relationships or the semantics of the problem by mapping S → V . The fitness-model
then maps V → F . Both approximation models are thus used collectively to approxi-
mate the original syntactic space (which has a non-continuous variable space represen-
tation) to the real-valued semantic space which is continuous, such that prediction of
fitness values for GP tree-like representation can be achieved at reduced computational
cost.

The next sub-section will explain the representation of the RBFN surrogates used
in this model.
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Figure 2: Workflow outline of fitness evaluation in the portion of (λ) sGP.

3.1.1. RBFN Training
The evaluation of the functions in y = f(Treei, X) may be time consuming. Thus,

instead of evaluating these functions, we want to replace it with a surrogate model that
approximates ŷi = F̂ (Treei, X).

RBFNs can be seen as a variant of artificial neural networks that uses radial basis
functions as activation functions [5]. They have been used in function approximation,
time series prediction, and control [5]. A radial basis function (RBF) is a real-valued
function φ : Rn → R whose value depends only on the distance from some point c,
called a center, so that

φ(x) = φ(‖xq − c‖)

The point c is a parameter of the function and the point xq is the query point to be
estimated. The norm is usually Euclidean, so ‖x−c‖ is the Euclidean distance between
c and x. The most common used type of radial basis functions is the Gaussian functions
as in:

φ(x) = exp(−β‖x− c‖2)

where β > 0 is the width parameter. Radial basis functions are typically used to build
function approximations as in Equation 1.

ˆy(x) = w0 +
N∑

i=1

wi φ(‖x− ci‖) (1)

8



Thus, ˆy(x) is used to approximate f(Treei, X). The approximating function ˆy(x)
is represented as a sum of N radial basis functions, each associated with a different
center ci, a width βi, and different weight wi, plus a bias term w0. In principle, any
continuous function can be approximated with arbitrary accuracy by a sum of this form,
if a sufficiently large number N of radial basis functions is used. The bias w0 can be
set to the mean of the values of the known data-points from the training set that used to
train the RBFN.

Training the RBFN requires to find three parameters: i) the centres ci, ii) the values
of wi in such a way that the predictions on the training set minimises the errors and iii)
the RBF width parameters βi.

The centers are chosen to coincide with the known data-points and evaluated with
the real fitness function. The β value is fixed for all N linear RBFs (global). In this
paper, we set β for each RBFs as 1/MD2 where MD is the max pairwise Euclidean
distance between the query data-point and all n in the training set.The value of β con-
trols the radius of each RBF to spread on the space to cover all other centres so that
each known function value at a center can potentially contribute significantly to the
prediction of the function value of any point in space, and not only locally to function
values of points near the given center.

Finally, the weights vector is calculated by solving the system of N simultaneous
linear equations in wi obtained by requiring that the unknown function interpolates
exactly the known data-points

y(xi) = bi, i = 1 . . . N

By setting
gij = φ(||xj − xi||),

the system can be written in matrix form as Gw = b where b is a vector of the true
fitness values of the data-points that have been used to train the surrogate. The matrix
G is non-singular if the points xi are distinct and the family of functions φ is positive
definite (which is the case for Gaussian functions). Thus solving w = G−1b gives the
weights w.

The value of the bias term w0 in Equation 1 is set to the mean value of the known
data-points, i.e., the mean of vector b. So the predicted function value of a point which
is out of the influence of all centres, is by default set to the average of their function
values.

The inputs that have been given to the fitness RBFN model and semantic RBFN
model will be explained in details in sections 3.2 and 3.3, respectively.

3.2. Semantic-Model

Generally, the process of obtaining the semantic representation for trees in GP pop-
ulation requires full evaluation for each tree using the fitness measure (which could be
computationally expensive). However, in sGP we only need to partially evaluate each
GP tree using k = |Xsub|, as opposed to a fully complete evaluation of the trees, i.e.,
since k << n, where n = |X|. Thus, significant computational cost savings can be
attained.
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The main task of the semantic-model is to predict the semantics of GP trees, rep-
resented in the form of real-valued vectors. The semantic RBFN model is designed to
yield insights into the functional relationship between the syntactic inputF (Treei, Xsub)
and semantic output vector yi

sub (hence established in this paper as a semantic aware
evolutionary search) by prototyping the function F (Treei, Xsub) = yi

sub such that
Xsub ⊂ X where |Xsub| << |X|. In other words, Xsub is subset of the training set
X , randomly selected. For each individual in the λ part of the population, an approxi-
mation or prediction of the Treei semantic output based on the complete dataset X is
made using the semantic-model. This can be represented as ŷi = F̂(Treei,X) such
that yi = ŷi+ε. Next, in taking ŷi as input of the fitness-model (details in section 3.3),
we approximate the original fitness function f(Treei, X), where ŷi denotes the output
of the semantic-model and ˆfitnessi is the predicted fitness value given ŷi, which is
the inferred behaviour output of Treei

1.
One can argue that the cost of using the RBFN surrogate requires computational

cost itself and thus the whole process could end without any reduction in computational
costs. However, remember that our main assumption is that the proposed model works
with computationally expensive problems (e.g., modelling of mechanical engines or
simulation of natural phenomena) where fitness measure can be time consuming and
in these cases the cost of using the RBFN can be negligible. To formalise the computa-
tional saving of semantic calculations in sGP, if the size of the training set is n and the
number of solution trees explored by the (λ) sGP is E, (λ) sGP would have performed
E×k

n evaluations based on the exact fitness measure (which we assume it is a com-
putationally expensive process) to construct the semantic model. In contrast, existing
semantic aware operators fully evaluate each GP tree completely in the population. To
this end, ifE is the number of exact fitness evaluations performed by standard semantic
aware operators to obtain the tree semantics, the computational cost difference between
the (λ) sGP and standard semantic aware operators is E : E×k

n , where n >> k and
E > 0. Thus, the evaluation of sGP in obtaining the tree semantics can be achieved at
lower computational costs.

Once the semantic-surrogate (based on RBFN) is trained using k points (which is
relatively inexpensive comparing to evaluating a tree on n points) it becomes possible
to predict the semantics of given trees. Hence, we reduce the full evaluation of each
tree (on n number of training samples) required by standard semantic operators to
only k training samples. A disadvantage of this model is the low number of training
samples used to train the RBFN (i.e., low k) may lead to questioning the ability of sGP
to perform adequately on problems with noise, missing samples, or outliers. However,
in preliminary experiments of sGP we found that when k = 40% of the training set
(randomly selected) a reasonable performance is attained.

One can argue that there is no need to predict the complete semantics (denoted
by real-valued output vectors of dimension R) of trees and search semantic space al-
together, for computationally expensive problems, since the fitness value of each tree
can be directly inferred from the partial evaluation (i.e., those k training samples). Al-

1In this paper, the ‘semantic’ space is spanned by real-valued vectors of dimension R. Thus, the term
semantic refers to the GP tree output behaviour denoted by real-valued vectors.
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though this argument may sound logical, we demonstrated that evaluating GP trees
based on a small training set make GP system more likely to converge towards false
optimum and leads the GP system to overfit the training data, thus losing generalisa-
tion capabilities. Moreover, we shall show in the experiments section, the results differ
between two versions of sGP. In the first version, we switched off the fitness-model
and guide the (λ) sGP search using only the semantic-model. In the second version,
we enable the fitness-model. Results obtained (as will be shown later in Section 4)
demonstrated that the collective use of both models as the surrogate led to superior GP
performance.

3.3. Fitness Model

As illustrated in Figure 2, the semantic-model passes the predicted behaviour output
vector ŷ of each tree in the (λ) sGP population, to the fitness-model.

Taking the predicted behaviour output vector as input, the fitness-model serves to
map the trees’ predicted output vectors (as produced by the semantic-model) to their
fitness values. This can be formalised as follows. Let the fitness-model be denoted as
F (ŷi) = ˆfitnessi, where ˆfitnessi denotes a prediction of the Treei’s fitness value.

In order to train the fitness-model, we used individuals in the µ sGP. As mentioned
previously, we store semantics of the elite non-duplicate µ individual solutions and
their associated exact fitness values of f(Treei, X) obtained during the search in a
centralised database D. Fitness-model uses the natural distance of the underlying out-
put vectors’ representation to map trees’ semantics to their fitness values. Hence, if the
trees’ output vectors are real-valued, simple Euclidean or Manhattan distance can be
used. If the trees’ output vectors are binary values then Hamming or Edit distance can
be used.

The next section will present the experimental settings and results.

4. Experiments

4.1. Experimental Settings

The aim of the reported experiments is to show that sGP is able utilises the surro-
gate model to explore the search space effectively under limited small number of eval-
uations (assuming that the given problem is computationally expensive) and achieve
superior solutions in comparison to other versions of GP systems when given exactly
the same number of evaluations. Experiments are made to cover three different classic
GP problems; 1) six different symbolic regression problems to test sGP on continuous
problems space, 2) four different even n-parity bit problems to test the model on dis-
crete problems space, and finally 3) a real-world application domain involving three
different time-series forecasting problems to further validate the sGP.

We compared the sGP against the 1) standard GP (GP) system to check whether
the idea of surrogate approximation for semantic space is useful, 2) standard GP with
random training technique (GP-RT) to allow GP to evolve generalised solutions using
a small training set, 3) GP based on a standard global surrogate model. The global sur-
rogate directly searches the syntactic space of the programs using the Structural Ham-
ming Distance [23] (GP-Surrogate(SHD)). We included GP-Surrogate(SHD) in order
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to compare surrogate approximation based on semantic differences against surrogate
approximation based on syntactic differences.

Table 1: sGP Settings used in the experiments.
Parameter sGP

µ 0.6
λ 0.4

Mutation of µ pop 30%
Crossover of µ pop 70%

Tournament size 2
Population Size 10

Generations 10
λ sGP

Mutation 30%
Crossover 70%

Tournament size 2
Population Size 20

Generations 20
Training samples for semantic-model k 4

We treated all test cases as computationally expensive problem representatives.
Thus, we limited the evaluation budget in all systems in the comparison to only 100 ob-
jective function evaluations. The term ’budget’ used here to indicate the total number
of evaluations used by the GP systems in the comparison to explore the search space.
Hence, for all systems included in the comparison, we set the population size and max-
imum number of generations 10 (i.e., 100 evaluations only to find the best possible
solution). Also, without loss of generality, we considered all problems as minimisation
problems (i.e., solutions with lower fitness values are better). Table 1 elucidates the
settings of sGP. To allow fair comparisons, we gave all algorithms in the comparison
exactly the same number of fitness evolutions. For the GP and GP-RT systems, 70%
sub-tree crossover and 30% sub-tree mutation was used as search operators. In the GP-
RT, a sub set of the training cases (of size 4), randomly selected, from the training set
and changed every generation. GP-Surrogate(SHD) is treated as sGP and received the
same settings, however the difference is that sGP uses two specialised surrogate mod-
els to the semantic space (see Section 3) while GP-Surrogate(SHD) uses only global
RBFN based on structural Hamming distance. For the µ and λ parameters, we tried dif-
ferent values and found that 40%-60% is the best ratio to obtain the best results (more
details on the justification these settings in Section 4.2.6). Finally, all GP systems in
the comparison used rump half-and-half [29] for tree initialisation.
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Table 2: Symbolic Regression Problems used in the experiments.
Function Type

F1 = x3 + x2 + 5x Polynomial
F2 = x6

x3+x2+1 Polynomial
F3 = x

1−log(x2+x+1) Logarithmic
F4 = Sin(x2) Trigonometric
F5 = 5

√
|x| Square-root

F6 = 100 + log(x2) + 5
√
|x| Square-root + Logarithmic

F7 = 2× (tan(x)× cos(x)) Trigonometric

4.2. Results
4.2.1. Symbolic Regression

To study the performances of the different GP systems on continuous problem do-
mains, we used six real-valued symbolic regression problems. These problems cov-
ered different types of functions: polynomial functions; trigonometric, logarithmic and
square-root functions; and complex functions (logarithm plus square-root). Table 2
illustrates all the test functions used in the experimental study. For all functions, we
randomly sampled 100 points from the interval [−5, 5] and used them as a training-set,
while using another 150 points as a testing-set to validate the ability of the systems to
interpolate new data-points from the training-set. Both training and testing sets are dis-
jointed. In addition, we randomly sample 50 new points from the interval [−10, 10] to
validate the systems’ extrapolation ability. The average of absolute errors was used as
a fitness measure. The statistical results (mean of the best-evolved solutions, median,
standard deviation and best-solution) of the GP systems across 20 independent runs
per test function are reported in Table 3. All GP systems have used {+,−, ∗, /} as the
function-set while {x, constant1− 6} as the terminal-set.

In addition, to verify the significance of the results differ between any two algo-
rithms, we conducted the Kolmogorov-Smirnov two-sample statistical significance test
on the results produced by the best-evolved solution of each system in comparison to
sGP and reported the P value in the last column. The P value is configured with a
5% significance level. As seen in table, sGP achieved superior means on all six regres-
sion problems (as highlighted in boldface) with marginal differences ranging from 3%
to 94%. The low means attained by sGP are also confirmed by the low medians in all
cases. For the best-evolved solution, sGP managed to evolve higher quality solutions in
five out of the six regression problems with marginal differences ranging from 0.1% to
88%. Now, on the unseen testing data (illustrated in Table 4), the proposed framework
is also shown to display superior means and medians in five out of the six cases un-
derstudy, with marginal differences ranging from 2% to 94%. As for the best-evolved
solutions, which test the generalisation abilities the proposed sGP also fares best in five
out of the six cases, with marginal differences ranging from 1% to 93%. One may ex-
pect that GP-RT to evolve solutions that generalise well on the unseen testing set. On
the contrary, as a result of the limited computational budget available (small number of
evaluations), GP-RT did not have sufficient computational resources to expose all in-
dividuals to the entire training examples and was unable to evolve towards generalised
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solutions. This suggests that GP with random training does not pose as a viable so-
lution for computationally expensive problems where computational budget is limited.
The P value is at the standard 5% significance level in most cases in the training and
testing sets. Finally, Table 5 reports the extrapolation performance where sGP is noted
to have emerged as superior in only three out of the six cases. Results show that sGP
can not extrapolate well from the training set in comparison to its competitors.

Table 3: Symbolic Regression: Summary results of 20 independent runs on (Training set).
Algorithm Mean Median Std Best P-value

F1
GP 6.95 6.94 5.71 9.6E-06 7.2E-04
sGP 1.12 1.1E-05 3.52 7.9E-06 N/A
GP-Surr(SHD) 5.67 2.24 6.36 8.8E-06 0.0232
GP-RT 18.66 23.80 11.59 9.1E-06 8.E-06

F2
GP 12.42 11.62 6.41 3.44 4.15E-05
sGP 5.56 3.83 4.65 2.57 N/A
GP-Surr(SHD) 13.37 13.75 7.50 2.77 1.83E-04
GP-RT 35.57 35.03 7.70 21.71 5.55E-10

F3
GP 4.72 3.04 7.74 1.23 0.2753
sGP 4.48 2.72 7.84 1.24 N/A
GP-Surr(SHD) 4.74 3.12 7.71 1.27 0.771
GP-RT 7.04 4.49 8.76 2.27 7.25E-04

F3
GP 0.53 0.54 0.04 0.47 0.4973
sGP 0.52 0.52 0.04 0.44 N/A
GP-Surr(SHD) 0.54 0.54 0.03 0.47 0.4973
GP-RT 2.74 0.81 3.65 0.52 4.15E-05

F4
GP 1.67 1.81 0.46 0.87 8.42E-06
sGP 0.84 0.85 0.23 0.38 N/A
GP-Surr(SHD) 1.91 2.01 0.47 0.85 2.49E-07
GP-RT 3.03 2.87 1.01 0.81 4.74E-09

F6
GP 3.94 3.99 0.87 1.79 0.0026
sGP 2.72 2.84 0.93 1.04 N/A
GP-Surr(SHD) 3.87 3.86 0.94 1.40 7.25E-04
GP-RT 32.21 5.26 111.43 3.03 1.53E-06

F7
GP 2832.48 447.07 4991.47 27.03 1.0
sGP 2831.54 446.96 4991.62 27.14 N/A
GP-Surr(SHD) 2832.48 447.17 4991.52 27.17 0.0026
GP-RT 2 832.90 447.17 4991.48 28.02 0.0014
*Bold numbers are the lowest.
* GP-Surr(SHD) is GP-Surrogate(SHD).
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Table 4: Symbolic Regression: Summary results of 20 independent runs on (Testing set).
Algorithm Mean Median Std Best P value

F1
GP 8.21 8.79 6.73 9.8E-06 7.25E-04
sGP 1.10 1.3E-05 3.37 8.8E-06 N/A
GP-Surr(SHD) 6.21 2.18 7.24 9.4E-06 0.0232
GP-RT 19.57 24.70 12.14 1E-05 8.42E-06

F2
GP 20.59 15.30 20.67 2.78 0.0082
sGP 13.45 6.37 20.18 1.92 N/A
GP-Surr(SHD) 21.13 14.90 22.22 2.46 0.02
GP-RT 45.33 37.96 22.89 26.30 3.63E-08

F3
GP 9.09 3.03 22.59 1.58 0.4973
sGP 8.89 2.71 22.60 1.82 N/A
GP-Surr(SHD) 9.09 3.11 22.58 1.50 0.77
GP-RT 10.42 4.48 22.49 2.70 0.01

F4
GP 0.58 0.57 0.05 0.50 0.0591
sGP 0.68 0.59 0.23 0.47 N/A
GP-Surr(SHD) 0.91 0.58 1.36 0.48 0.77
GP-RT 2.19 0.88 2.71 0.54 0.02

F5
GP 1.71 1.82 0.52 0.89 7.25E-04
sGP 0.99 0.89 0.40 0.24 N/A
GP-Surr(SHD) 1.99 2.05 0.49 1.06 1.53E-06
GP-RT 3.16 2.91 1.10 0.89 4.74E-09

F6
GP 9.39 4.37 23.22 1.16 0.0082
sGP 5.90 3.13 7.91 0.97 N/A
GP-Surr(SHD) 4.15 3.91 1.28 2.50 0.06
GP-RT 16.98 5.15 41.63 3.38 7.25E-04

F7
GP 3.9E+04 214.23 1.6E+05 22.88 0.0591
sGP 2.5E+07 1226.25 1.0E+08 22.87 N/A
GP-Surr(SHD) 3.9E+04 231.22 1.6E+05 23.01 0.2753
GP-RT 3.9E+04 222.54 1.6E+05 22.88 0.1349
*Bold numbers are the lowest.
* GP-Surr(SHD) is GP-Surrogate(SHD).
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Table 5: Symbolic Regression: Extrapolation performance of best solution across 20 independent runs.
Test Function Mean

F1
GP 84.28
sGP 2.54

GP-Surrogate(SHD) 61.77
GP-RT 174.99

F2
GP 84.18
sGP 11.66

GP-Surrogate(SHD) 102.20
GP-RT 254.66

F3
GP 3.18
sGP 4.94

GP-Surrogate(SHD) 3.38
GP-RT 5.09

F4
GP 0.82
sGP 0.94

GP-Surrogate(SHD) 0.71
GP-RT 10.04

F5
GP 5.11
sGP 4.32

GP-Surrogate(SHD) 5.14
GP-RT 6.32

F6
GP 6.64
sGP 6.35

GP-Surrogate(SHD) 4.49
GP-RT 5.77

F7
GP 3453.682
sGP 3468.688

GP-Surrogate(SHD) 3453.12
GP-RT 3454.74

*Bold numbers are the lowest.

4.2.2. Even n-Parity Bit
The even n-parity problem involves the function-set {AND, OR, NOT} and

terminal-set {X0, X1, X2, ..., Xn}. The objective is to return a logic ′1′ when an even
number of inputs (X0 − Xn) is present. We studied the sGP on the n-parity problem
for n = 34, 5, 6, 7 and 10 variables. The fitness function is the percentage of the wrong
outputs (i.e., minimisation problem). This problem set has been selected to validate the
sGP under discrete problem domain. Little success on the use of surrogate models to
approximate discrete landscape have been reported to date (e.g., see [13]). sGP’s re-
markable results are observed on the discrete problem. Table 6 reports the results of 20
independent runs for each GP system on the range of n-parity problem. On the 3-parity
the problem is too easy where all algorithms have found a global optimum solution
(with fitness value equals 0) except GP-Surrogate(SHD). On 4-parity, the problem is
still simple to solve, thus sGP and GP-Surrogate(SHD) converged to the same statisti-
cal mean and median as well as the best-evolved solutions with similar fitness values.
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Figure 3: Population average trees’ size (for n-Parity bit problems) graph for all GP systems in comparison
(averaged over 20 independent runs).

On the larger 5, 6, 7 and 10 parity problem statistical performance differences are more
evident between the various methods, where sGP is noted to emerged as superior in
the statistical mean and median and best-evolved solutions attained verified by the P
reported in the last column in Table 6.

As shown in Figure 3, sGP and GP-Surrogate(SHD) tends to bias the search towards
large trees while GP and GP-RT biases towards smaller trees. It is likely that in both
sGP and GP-Surrogate(SHD) the used surrogate favours the exchange of large blocks
between individual trees so as to alter the trees’ semantics.
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Table 6: Even n-Parity: Summary results of 20 independent runs.
Algorithm Mean Median Std Best P value

3 variables
GP 31.25 0.00 37.50 10.08 0.9655
sGP 33.75 0.00 37.50 8.93 N/A

GP-Surr(SHD) 33.75 25.00 37.50 5.73 0.9999
GP-RT 47.50 0.00 50.00 10.90 4.7406e-09

4 variables
GP 36.25 37.50 2.64 31.25 0.324
sGP 34.38 37.50 3.29 31.25 N/A

GP-Surr(SHD) 34.38 37.50 3.29 31.25 1
GP-RT 48.75 50 2.64 43.75 1.28E-09

5 variables
GP 46.25 46.87 1.32 43.75 0.1764
sGP 45.00 46.87 2.19 40.63 N/A

GP-Surr(SHD) 46.56 46.87 0.99 43.75 0.01
GP-RT 50.00 50 0.00 50.00 1.31E-10

6 variables
GP 49.69 50.00 0.66 48.44 9.93E-04
sGP 47.97 47.65 1.29 46.88 N/A

GP-Surr(SHD) 49.06 50.00 0.81 48.44 0.00
GP-RT 50.00 50.00 0.00 50.00 3.98E-08

7 variables
GP 48.98 49.21 0.38 48.44 0.045
sGP 48.67 48.43 0.53 47.66 N/A

GP-Surr(SHD) 49.14 49.22 0.25 48.44 4.05E-04
GP-RT 50.00 50.00 0.00 50.00 9.60E-10

10 variables
GP 50 50 0 50 0.0486
sGP 49.9 50 0.05 49.9 N/A

GP-Surr(SHD) 50 50 0 50 0.0486
GP-RT 50 50 0 50 0.0486

*Bold numbers are the lowest.

4.2.3. Time-Series Forecasting
In this subsection, we shall next study the efficacy of sGP on a real world appli-

cation, particularly pertaining to a Mackey-Glass time-series and two other financial
time-series predictions.

The Mackey-Glass time-series was introduced by Mackey and Glass in [22]. It has
been widely used as a benchmark for the generalisation ability of a variety of machine
learning methods. The Mackey-Glass equation is:

x(t+ 1) = x(t)− bx(t) + a
x(t− τ)

1 + x(t− τ)10

where a = 0.2, b = 0.1 and τ = 5, the time series is aperiodic, non-convergent,
and completely chaotic. Each GP system received 100 samples as a training set
and another 150 samples as the testing set from the interval [−100, 100]. The
function-set and terminal-set are defined as {+,−, ∗, /, sqrt, sin, cos, pow, log} and
{x, constant1 − 100}, respectively. For the financial time-series, we used the Ap-
ple’s and Boing’s weekly stock prices from 2002-2012 (freely available from Yahoo
Finance service). The average of absolute errors was used as a fitness measure. Table
7 summarises the statistical results of the 20 independent runs. As can be seen, sGP
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outperformed all counterpart systems on all three time-series forecasting problems in
terms of mean, median and in 2 out of 3 cases in terms of best. sGP lost the com-
parison against GP with very small margins. It is fair to report that none of the GP
systems understudy managed to accurately fit the training time-series. This is because
the function-set given to the GP systems in the comparison is not enough to construct
functions that fit the stochastic nature of the test time-series. Thus, all GP systems
evolved functions that at best draw a smooth line through the target time-series.

Table 7: Time-Series Forecasting: Summary results of 20 independent runs.
Algorithm Mean Median Std Best

Mackey-Glass time-series
GP 38.27 41.31 5.40 31.01
sGP 28.95 28.48 2.87 24.87

GP-Surr(SHD) 39.02 41.05 5.01 31.79
GP-RT 39.25 42.87 5.84 30.91

Boeing time-series
GP 160.29 160.30 0.05 160.20
sGP 159.48 159.77 0.88 157.87

GP-Surr(SHD) 160.10 160.28 0.51 158.65
GP-RT 161.03 160.36 2.12 160.30

Apple time-series
GP 190.30 190.33 0.40 189.72
sGP 189.95 189.90 0.10 189.75

GP-Surr(SHD) 190.20 190.17 0.35 189.87
GP-RT 203.79 199.74 12.02 199.04

*Bold numbers are the lowest.

4.2.4. sGP with Fitness-Model vs. sGP without Fitness-Model
As mentioned previously, sGP uses a semantic-surrogate model to predict the trees’

output vectors (which we refer to as semantics in this paper) and a fitness-model to
search the underlying semantic space of the programs. Of course, it is possible to
calculate the fitness value of any tree once the semantic-surrogate predicts the output
vector, which would enable one to avoid using the fitness-model altogether. However,
we argue that semantic space is easier to search and thus the use of the fitness-model
has direct effects on the performance. In this section, we test two versions of sGP to test
our hypothesis. In the first version, we removed the fitness-model and calculated the
fitness values of λ part of the population using the predicted output vectors produced
by the semantic-surrogate alone. In the second version, we included the fitness-model.
For the purpose of this study we used function F6 (see table 2) as the test bed. Each
sGP version (i.e., one with fitness-model and one without fitness-model) tried to solve
the given problem using 10 individuals in 100 generations. We compared the two ver-
sions with 20 independent runs. Figure 4 shows the best-in-generation graph (averaged
over 20 independent runs). It is clear that sGP with a fitness-model (i.e., the second
version) achieved improved solutions over the sGP without a fitness-model (i.e., the
first version). The mean fitness (on training set) of best-solutions across the 20 runs
for the first version is 139.15, while for the second version is 82.81. The fitness of
the best-evolved solution across the whole 20 runs for the first version is 38.93 while
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Figure 4: Performance differences between sGP with and without fitness-model model.

for the second version is 14.92. In addition, to verify the significance of the resulting
differences between the two versions, we further conducted the Kolmogorov-Smirnov
two-sample statistical significance test based on the best-evolved solution produced by
the two versions across the 20 run. A P value of 0.0232 at 5% significance level is
obtained.

It is also notable that the results differ greatly at early stages of the evolution, while
in later generations, both version converge competitively. This shows that the proposed
sGP is suitable for solving computationally expensive problems since it is able to iden-
tify high quality solutions rapidly and does not exhibit any degradation in performance
at later stages of the search.

In our experiments, sGP is noted to have incurred a lower execution time than the
standard GP system. However, it has an execution time that is close to GP-RT and GP-
Surr (SHD). This is as expected since both GP-RT and GP-Surr (SHD) evaluate the
trees only partially to improve computational efficiency. Nevertheless, in contrast to
GP-RT which randomly selected the training sub-set, GP-Surr (SHD) performs a more
intelligent means to improve computational efficiency via the use of global surrogate.

4.2.5. sGP in comparison against state-of-the-art regression models
As mentioned previously, the aim of the experiments is to demonstrate that sGP is

capable of discovering optimum solutions under limited number of evaluations, assum-
ing the given problem is computationally expensive where the user does not have the
luxury of performing extensive search. However, in order to evaluate the behaviour of
sGP under different circumstances, in this section, we will explore sGP performance
when the number of evaluations is high against the other GP systems, thus, relax the
search and allow evolution time to converge. For the purpose of this analysis, we used
function F4 as a test bed. We used the same settings described in Section 4.1, however,
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the number of evaluations has been increased to 10, 000 where the population size is
100 and number of generations is 100. All systems tried to approximate the function
in 20 different runs. In addition, we included in the comparison Kriging, RBFN, and
Linear and Polynomial Regression [2]. Table 8 shows the results of the comparison.
Note that these algorithms are deterministic and therefore we applied them only once
to solve the problem. sGP outperform all its comparators in terms of mean, median
and best solutions. Interestingly, performance of GP-RT is competitive which confirm
our assumption that GP-RT requires sometime to converge and it is not good when the
search runs for small numbers of evaluations.

Table 8: Symbolic Regression: Summary results of 20 independent runs on (Testing set) in comparison
against state-of-the-art regression models.

Algorithm Mean Median Std Best
F4

GP 3.07 2.28 3.33 0.66
sGP 0.63 0.62 0.01 0.62

GP-Surr(SHD) 0.97 0.63 0.83 0.64
GP-RT 24.22 0.63 62.41 0.63
RBFN 26.23
Kriging 192.74

Linear Regression 1.20
Polynomial Regression 0.97
*Bold numbers are the lowest.

4.2.6. Sensitivity Analysis for µ and λ
As mentioned previously, we set parameters µ and λ based on trail-and-error in

preliminary experiments. In this section, we will show the behaviour of sGP under
different values for λ . We have conducted a sensitivity analysis for the parameter λ.
For this purpose, we used sGP to solve four symbolic regression problems, namely F1-
F4 (see Table 2) under different values of λ. As illustrated in Figure 5, sGP achieved
the best results on problems F1,F2, and F4 when λ = 60% and achieved the best the
best results on problem F3 when λ = 10%. We believe that the optimal setting for
the λ is largely attributed to the characteristics of the given problem. However, for
simplicity, we set λ = 60% because it allows sGP to perform reasonably well on all
problems. In future research, we will explore methods to allow the setting of the λ
automatically.

5. Conclusions

In this work we propose a new form of GP called sGP. The proposed framework
evolves µ percentage of the population using standard search operators and the remain-
ing λ percentage using surrogate models. For the λ part of the population, sGP uses
surrogate model as a search operator to produce new offspring. sGP uses two spe-
cialised models, namely, semantic-model to map the syntactic space of the problem
into semantic space and fitness-model to map the semantic space into fitness space.
The contribution of this paper is fourfold; 1) To the best of our knowledge, this is the
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Figure 5: sGP performance under different value of λ. Results are averaged from 20 different runs.

first successful attempt to apply surrogate model to GP tree-like representation, 2) We
extend semantic operators to computationally expensive problems, 3) The proposed
framework can be generalised, in principle, and it is not problem-dependant because
surrogate approximates the semantic search space instead of the structural space. This
allows surrogate to use the natural metric distance of the semantics representation, and
4) A novel form of GP is presented, which we called sGP.

Although, sGP adds a layer over a standard GP system, this increased complexity
is justified by the better performance which is demonstrated by the experimentations
when all algorithms included in the comparison tested under the exact same number
of evaluations. Empirical evidence of the new framework with three different prob-
lems (Symbolic regression, Even n-parity, and Time-series forecasting) demonstrate
its superiority over standard GP systems.

It is fair to report that the main disadvantage of sGP is that it requires the use of
original problem fitness measure in order to create training examples for the semantic-
model to predict trees’ semantic. This part of surrogate training comes at extra compu-
tational cost. However, we used only small numbers of samples from the training set
and thus a significant reduction of the full computational costs (coming from evaluating
trees on the full training set in standard semantic aware operators) is still achieved. In
addition, we compared our system against different GP systems after allocating them
exactly the same number of fitness evaluations and results were in favour of sGP. Also,
another disadvantage is that the surrogate model may only be applied on problems with
specific search space properties. In particular, each individual should produce one and
only one vector value for each input. Assuming a given vector of inputs will produce
corresponding vector of outputs. This restriction excludes problems where the GP trees
are used directly as programs, like Artificial Ant, or where the produced output is not
numeric or vector-like.
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For future research, we will try to avoid the extra computational costs required to
train the semantic-model. In addition, we will apply sGP on real-world computation-
ally expensive problems where semantic calculations can not be easily obtained (e.g.,
robot vision). Moreover, we will look closely to the surrogate behaviour with regard
to different problems’ space. Also, for future work, we will explore the framework
performance with different surrogate models other than RBFNs.
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