
Geometric Surrogate Model Based Optimisation
for Genetic Programming: Initial Experiments

Alberto Moraglio1 and Ahmed Kattan2

1 School of Computing,University of Birmingham, UK
albmor@gmail.com

2 College of Computer and Information Systems
Um Alqura University, Saudi Arabia

akattan@uqu.edu.sa

Abstract. Many real-world problems have expensive objective func-
tions. In continuous optimisation, Surrogate Models (SMs) are often used
as components of optimisation algorithms to tackle these types of prob-
lems. In previous work, we showed that such approaches can be naturally
and rigorously generalised to combinatorial spaces based in principle on
any arbitrarily complex underlying solution representation. This direct
approach to representations, unlike previous approaches, does not re-
quire shoe-horning of the solution structure in a vector of features prior
to its application. This enlarges greatly the scope of SMs to complex rep-
resentations which cannot be naturally mapped to vectors of features. In
this paper, we illustrate how this framework applies straightforwardly to
tree-based Genetic Programming and report initial experimental results.

1 Introduction

Some typologies of tasks when cast as optimisation problems give rise to objec-
tive functions which are prohibitively expensive to evaluate. Oftentimes these
problems are black-box problems, i.e., whose problem class is unknown, and
they are possibly mathematically ill-behaved (e.g., discontinuous, non-linear,
non-convex). For example, most engineering design problems are of this type
(see e.g., [10]). They require experiments and/or simulations to evaluate to what
extent the design objective has been met as a function of parameters control-
ling the design. The simulation can take many minutes, hours, or even days to
complete.

There is an increasing number of optimisation problems naturally associated
with complex solution representations which have also very expensive objec-
tive functions. In particular, Genetic Programming that normally uses a tree
representation, has a number of application domains with expensive objective
functions. For example, one of them is when genetic programs encode behavioral
controllers of robots that may need to be tested in a virtual or real environment
a number of times to assess how good the controller is at controlling the robot
for certain target tasks (e.g., wall-following or obstacle avoidance).

Optimisation methods based on surrogate models, also known as response
surface models, have been successfully employed to tackle expensive objective
functions. For a survey on surrogate model based optimisation methods refer to
[4]. A surrogate model is a mathematical model that approximates as precisely
as possible the expensive objective function of the problem at hand, and that is
computationally much cheaper to evaluate. The objective function is considered
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Algorithm 1 Surrogate Model Based Optimisation
1: Sample uniformly at random a small set of candidate solutions and evaluate them using the

expensive objective function (initial set of data-points)

2: while limit number of expensive function evaluations not reached do

3: Construct a new surrogate model using all data-points available

4: Determine the optimum of the surrogate model by search, e.g., using an evolutionary algo-
rithm (this is feasible as the model is cheap to evaluate)

5: Evaluate the solution which optimises the surrogate model in the problem with the expensive
objective function (additional data-point available)

6: end while

7: Return the best solution found (the best in the set of data-points)

unknown. The surrogate model is built solely from available known values of the
expensive objective function evaluated on a set of solutions. We refer to the pair
(solution, known objective function value) as data-point. The traditional proce-
dure of surrogate model based optimisation (SMBO) [4] is outlined in Algorithm
1. The role of the evolutionary algorithm in the SMBO procedure is to infer the
location of a promising solution of the problem using the surrogate model, and
it is not directly applied to the original problem with the expensive objective
function. This is feasible because the computational cost of a complete run of
the evolutionary algorithm on the surrogate model is negligible (in the order of
few seconds) with regard to the cost of evaluating a solution using the expensive
objective function of the problem (in the order of minutes, hours or even days
depending on the problem).

SMBOs are naturally suited to continuous optimisation. In this case, a host
of techniques to build functions from data-points can be borrowed from statistics
(i.e., multi-variate regression [1]) and machine learning (i.e., supervised learning
by e.g., neural networks and support vector machines [6]), which can be used
to build surrogate models. However, SMBOs do not seem to be applicable to
combinatorial optimisation problems except in those cases in which solutions are
naturally represented as vectors of integers, in which case adequately discretised
versions of continuous surrogate models may be used.

To the authors’s best knowledge there are no works in literature on surro-
gate models defined directly on more complex representations than vectors, and
specifically on tree-based Genetic Programming. In literature, there is an ap-
proach [5] in which Genetic Programming is used to do symbolic regression to
determine the best fitting function to the data-points. In this approach GP is not
used to search the surrogate model (i.e., data-points are not programs) but to
train the surrogate model on the known data-points with a vector representation.

Currently, if one wants to use surrogate models on search problems naturally
based on structured representations, the original representation has to be shoe-
horned to a vector form in a pre-processing phase known as features extraction in
the Machine Learning literature. However, extracting features from structured
representations, such as Genetic Programming trees, can be inherently problem-
atic as oftentimes it does not appear to be a natural way to map these types of
structures to vectors of features. For example, what would it be a natural set of
features to consider to map a tree representing a symbolic regression formula or
a boolean formula to a fixed-size vector? This question does not seem to have
any obvious answer.
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Is there a systematic and rigorous way to adapt a surrogate model for the
continuous domain to a new representation which does not require us to rethink
the surrogate model, or make ad-hoc adaptation to the model, for any target
representation considered however complex it is? In very recent work [8], we have
proposed a generalisation based on geometric ideas [7] of a well-known class of
surrogate models – Radial Basis Function Networks [3] – which answers in the
affirmative the question above. The general surrogate model was applied to the
binary string representation. In this paper, we illustrate how the SMBO with the
general surrogate model can be straightforwardly applied to tree-based Genetic
Programming, and report initial experimental results.

2 Generalised Radial Basis Function Networks

A radial basis function (RBF) is a real-valued function ϕ : Rn → R whose
value depends only on the distance from some point c, called a center, so that
ϕ(x) = ϕ(∥x − c∥). The point c is a parameter of the function. The norm is
usually Euclidean, so ∥x − c∥ is the Euclidean distance between c and x. The
most frequently used types of radial basis functions are Gaussian functions of
the form:

ϕ(x) = exp(−β∥x− c∥2)
where β > 0 is the width parameter. Radial basis functions are used to build
function approximations of the form:

y(x) = w0 +

N∑
i=1

wi ϕ(∥x− ci∥).

In an RBFN there are three types of parameters that need to be determined
to optimise the fit between y(x) and the data: the weights wi, the centers ci,
and the RBF width parameters βi. A widely applied procedure to fit RBFNs to
the data consists of choosing the centers ci to coincide with the known points
xi, and choosing the widths βi according to some heuristic based on the distance
to nearest neighbors of the center ci or to the maximum distance between the
chosen centers. The bias w0 is set to the average of the function values bi at the
known data-points (i.e., function values of the points in the training set). The
weights wi can be determined by solving the system of N simultaneous linear
equations in wi obtained by requiring that the unknown function interpolates
exactly the known data-points, which can be solved using simple linear algebra,
involving a matrix inversion (see [3] for details).

In very recent work [8], we used a geometric methodology to generalise
RBFNs to any solution representation. The gist of the idea is that all aspects of
RBFNs that allow us to use them as surrogate models, i.e., model definition and
representation, training, querying and searching of RBFNs, can be naturally gen-
eralized from Euclidean spaces to general metric spaces, simply by replacing the
Euclidean distance with a generic metric. The generalized model applies to any
underlying solution representation once a distance function rooted on that rep-
resentation is provided (e.g., Edit distance on trees). In particular, this method
can be used as it is to learn in principle any function mapping directly complex
structured representations to reals without introducing any arbitrary ad-hoc
adaptation to the RBFNs. There is no special requirement of pre-processing the
target representation and shoehorn it in a vector of features.
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Table 1. Results on the Unimodal Problems (w.r.t. SD and SHD), Parity and Symbolic
Regression Problems for the comparison of SMBO-SD, SMBO-SHD, Random Search
and GP. Mean and best fitness over 20 independent runs of the best solution found by
each algorithm, for md = 3, 4, 5, 6, 7 (lower fitness is better).

Unimodal-SD
SMBO-SD SMBO-SHD Random Search GP

MD Mean Best Std Mean Best Std Mean Best Std Mean Best Std
3 0.0095 0.0000 0.0219 - - - 0.0285 0.0000 0.0407 0.0560 0.0000 0.0495
4 0.0078 0.0000 0.0134 - - - 0.0228 0.0000 0.0364 0.0493 0.0010 0.0470
5 0.0008 0.0000 0.0022 - - - 0.0027 0.0001 0.0040 0.0143 0.0010 0.0231
6 0.0011 0.0000 0.0030 - - - 0.0041 0.0001 0.0046 0.0259 0.0000 0.0399
7 - - - - - - - - - - - -

Unimodal-SHD
SMBO-SD SMBO-SHD Random Search GP

MD Mean Best Std Mean Best Std Mean Best Std Mean Best Std
3 - - - 0.47 0.11 0.19 0.43 0.11 0.16 0.50 0.22 0.18
4 - - - 0.14 0.07 0.05 0.37 0.22 0.13 0.49 0.11 0.25
5 - - - 0.07 0.04 0.03 0.24 0.11 0.08 0.48 0.05 0.21
6 - - - 0.04 0.01 0.04 0.14 0.02 0.08 0.46 0.14 0.21
7 - - - 0.02 0.008 0.04 0.18 0.10 0.04 0.32 0.06 0.20

4-Odd Parity
SMBO-SD SMBO-SHD Random Search GP

MD Mean Best Std Mean Best Std Mean Best Std Mean Best Std
3 47.50 37.50 3.85 45.00 37.50 6.45 45.00 37.50 6.45 48.75 37.50 3.95
4 41.25 37.50 5.55 40.00 37.50 5.27 41.25 37.50 6.04 42.50 37.50 6.45
5 38.75 37.50 2.80 37.50 37.50 0.00 37.50 37.50 0.00 47.50 37.50 5.27
6 37.50 37.50 0.00 37.50 37.50 0.00 37.50 37.50 0.00 41.25 37.50 6.04
7 - - - 33.75 25.00 6.04 37.50 37.50 0.00 37.50 37.50 0.00

Symbolic Regression
SMBO-SD SMBO-SHD Random Search GP

MD Mean Best Std Mean Best Std Mean Best Std Mean Best Std
3 5.17 3.01 1.84 4.88 3.44 0.82 4.88 3.44 0.78 5.17 2.64 1.35
4 2.94 1.93 2.56 6.35 4.46 1.17 5.78 4.27 1.41 6.39 4.46 1.58
5 4.33 2.98 1.04 5.58 3.84 1.21 5.18 3.51 1.21 5.39 4.05 1.27
6 4.10 2.34 1.14 3.74 2.95 0.73 3.52 2.99 3.48 4.39 3.48 0.57
7 - - - 4.50 3.45 0.77 4.96 3.81 0.54 4.62 3.71 0.67

3 Experiments

Experiments have been carried out on two standard GP test problems – symbolic
regression and parity problems – and on two types of unimodal problem, in which
the fitness of a tree (to minimise) is given by its distance to an arbitrary but fixed
tree. We will consider the problems in the test-bed as having costly objective
functions. We treated all problems as minimisation problems (i.e., solutions with
lower fitness values are better). As distance functions between GP trees, we have
used the well-known Structural Distance (SD) for GP trees [2] with parameter
K = 15 and the Structural Hamming Distance (SHD) [9]. Since we consider two
distance functions, we have two types of SMBO (SMBO-SD and SMBO-SHD)
and two types of unimodal functions (Unimodal-SD and Unimodal-SHD). The
choice of a distance well suited to the problem at hand is crucial to obtain a
surrogate model able to make meaningful predictions and guide appropriately
the search of the SMBO.

We use a standard surrogate model based optimisation algorithm (see Algo-
rithm 1) and the learning procedure presented in the previous section. As search
spaces of different size require different parameter settings, we set the parameters
as a function of the maximum allowed depth of trees in the initial populationmd.
Consequently, the maximum number of nodes of a tree with maximum depth md
and function sets of arity at most two is 2md − 1. The number of total available
expensive function evaluations is set to n = 2md. So, essentially our aim is to
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find the best solution to the problem the algorithm can produce in linear time
on the maximum size of the trees in the initial population. We set the size of the
initial sample of data-points to two, and the number of sample points suggested
by the surrogate model to n − 2. To search the surrogate model we use stan-
dard genetic programming with tournament selection with tournament size two,
subtree crossover with crossover rate 0.8, subtree mutation with mutation rate
0.17 and reproduction operator at 0.03. The population size and the number of
generations are both set to n, which provide GP with enough trials to locate a
good solution of the surrogate model.

We compared the SMBO algorithms with standard GP and with Random
Search (RS) applied directly on the problem with the expensive objective func-
tion. Random search is considered because with small samples it can perform
relatively well. We gave all algorithms in the comparison exactly the same num-
ber of expensive objective functions, which is n trials, and report the best so-
lution found. The GP used has a population of

√
n individuals, it runs for

√
n

generations. It uses tournament selection with size two, subtree mutation with
probability of 0.17, subtree crossover with crossover rate 0.8 and reproduction
operator at 0.03. For any of the problem in the test-bed, we conducted exper-
iments for maximum depth md ranging from 3 to 7, and did 20 independent
runs.

Table 1 reports the results of the comparison. As a general remark, we notice
that as md grows all algorithms in the comparison tend to get better solutions.
This trend is not surprising as the number of expensive fitness evaluations pro-
vided is an increasing function of md. Let us now consider each problem. On
both Unimodal problems, looking at the mean values, the corresponding SMBO
is consistently the best, followed by Random Search, and finally by GP. This
suggests that a SMBO performs well on a problem which is unimodal w.r.t. the
distance used as a base for the SMBO. This may suggest that a criterion for
choosing a distance for SMBO could be picking one with a good fitness-distance
correlation for the problem at hand (since the unimodal problem considered is
a cone and by construction has maximum fitness distance correlation). Perhaps
surprisingly, Random Search does better than Genetic Programming. This is be-
cause GP does not have enough fitness evaluations available to “get the evolution
started”, whereas the solutions found by random search exhibits a large variance
in quality so the best solution found can be competitive “by a stroke of luck”,
especially with small sample size and in small problems. On the Parity prob-
lem, looking at the means, SMBO-SHD wins over Random Search and GP, but
with a smaller margin, whereas SMBO-SD performs worse than random search.
Again, GP is worse than RS, but for larger budget of expensive evaluations
(i.e., md = 7), its performance matches RS. Notice that also the performance
of both SMBOs are getting better relative to RS with a larger budget. It would
be interesting to see how the relative performance of the algorithms in the com-
parison changes for larger md. We will do this analysis in future work. On the
parity problem, it would seem that SMBO-SHD will still lead over the others,
and that RS will become last. Let us now consider the symbolic regression prob-
lem. SMBO-SD performs best, RS second best, followed by SMBO-SHD and GP
worst. Also, in this case it would be interesting to do experiments with largermd.
Symbolic regression seems to be harder for SMBO-SHD and easier for SMBO-
SD, and the other way around for the parity problem. This may suggest that
SHD and SD are well-suited for the parity problem and for symbolic regression,
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respectively. In future work, we will consider alternative distances and try to
understand how to chose distances as a basis for SMBO for a given problem.

In summary, analogously to the case of continuous space, the surrogate model
on the Genetic Programs has helped at finding better solutions than using stan-
dard search algorithms. These results are by all means preliminary. However,
this is initial evidence that makes promising the application of this framework
to real-world problems using complex solution representations associated with
non-trivial discrete spaces, such as GP, which cannot be approached with more
traditional methods.

4 Conclusions and Future Work

A direct approach to representations greatly enlarges the scope of SMBO to
complex representations (e.g., Genetic Programming trees) which cannot be nat-
urally mapped to vectors of features. In previous work, we have outlined a con-
ceptually simple, formal, general and systematic approach to adapt a SMBO
algorithm to any target representation.

As a preliminary experimental validation of the framework on a non-trivial
discrete space and structured representation, we have considered the Genetic
Programming trees endowed with the structural distance and structural ham-
ming distance and tested the SMBO on a test-bed on standard GP problems, ob-
taining that with the same budget of expensive function evaluations, the SMBO
performs well in a comparison with other search algorithms. This shows that
this framework has potential to work well on real-world problems using complex
solution representations associated with non-trivial discrete spaces.

Much work remains to be done. Firstly, we will test the framework on other
GP problems and with different settings for the number of expensive evaluations
available. We will also experiment with other non-vectorial representations, such
as permutations and variable-length sequences. Then, we will test how the system
performs on a number of challenging real-world problems.
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