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Deep Evolution of Feature Representations for
Handwritten Digit Recognition

Alexandros Agapitos, Michael O’Neill, Miguel Nicolau, DavFagan, Ahmed Kattan, Kathleen Curran

Abstract—A training protocol for learning deep neural  so-calledgreedy layer-wise training4]. In this method, a
networks, called greedy layer-wise training, is applied to the hierarchy of features is learned one layer at a time: legrain
evolution of a hierarchical, feed-forward Genetic Progranming  new transformation at layérthat is composed of a previously
based system for feature construction and object recognith.  |earned transformation at layer 1. After the end of greedy
Results on a popular handwritten digit recognition benchmak layer-wise training, the resulting features of the laselagan
clearly demonstrate that two layers of feature transformatons be used as input t(,) train a classifier in supervised mode. It is

improves generalisation compared to a single layer. In addion, hp . 8
we show that the proposed system outperforms several standh empirically demonstrated that layer-wise stacking of deat

Genetic Programming systems, which are based on hand- detectors often yields a representation that is more ffigie
designed features, and use different program representains classified as opposed to its single-layer counterpart [5].

and fitness functions. ) .
The layer-wise learning of features can be performed

with either unsupervised, or semi-supervised or supeidvise
learning [3].Greedy layer-wise supervised trainif@LST),
Object recognition and image understanding are furwhich is also the topic of the present work, was first intro-
damental tasks of Artificial Intelligence. A great deal ofduced in the context of deep feed-forward neural networks
research is devoted to feature engineering for object recoigp [6]. In that work, after the first one-hidden-layer netkor
nition systems, which is often a tedious process that requiris trained, its output layer was discarded and a new one-
significant human involvement. Instances of state-ofdtte- hidden-layer network is stacked on top of it. The resulting
hand-crafted feature descriptors that appear in the fitega network is trained using gradient descent, leaving uncédng
are gradient-based operators such as Scale-invarianirEeathe weight vector of the previous hidden layer. This proiess
Transforms, affine-invariant patches and Histogram of Orepeated for a number of different layers. The generatisati
ented Gradients, Geometric Blur, as well as features iedpir performance of the proposed system was superior to the
by neuroscience like the V1-based model (for a descriptigdystem having the same number of hidden layers that were
of these and their reference see Section 1.1 in [1]). In ord@intly trained. Another variant of GLST is presented in the
to expand the applicability of Machine Learning to featurgvork of [7], where the outputs of the previous layer were
extraction tasks, much recent work has focussed on makiféd as extra inputs, in addition to the raw input, for the
object recognition systems less dependent on human-bagekt layer. Moreover, a successful application of GLST to
feature construction. The aim is to design systems so theenversational speech transcription is reported in [8].
good feature representations can be automatically leamed ) . )
support effective induction of a classifier. The fundamenta Genetic Programming (GP) has been successfully applied

question that is addressed here is: given an image, hd@ OPject recognition tasks (see [9] for a surveying table in
should we compute its representation? page 5). Most systems evolve classification programs that se

lect and non-linearly combine features from a predefined bag

Many recent object recognition systems use a cascadegiffeatures that are hand-crafted. More importantly, athef
two basic modules responsible for feature construction [I3P systems to-date use a single stage of classifier evolution
followed by a classifier induction algorithm, generally aFinally, multi-class object recognition usually requirither
multinomial logistic regression. These modules are: (1Pa 2the evolution of multiple one-vs-the-rest binary classifier,
convolutional-based transformation of patches of raw Ipixén case where a standalone classifier is used, some sort of
intensity values into a 2Cfeature map and (2) a pool- effective classification strategy in order to map its output
ing operation (i.e. down-sampling) that combines spatiallinto different class labels. Multinomial logistic regressis
nearby values of the feature map, for example through a maxvery successful multi-class classification algorithnt ties
or average operator. The simpler implementations employrt been combined with GP to-date.
single layer of feature detection, however, systems based o
multiple layers of feature detectors are currently settimg The paper proposes a novel way to evolve with GP a
winning records in object recognition competitions [2]. hierarchical feature construction and classification esyst
with feedforward processing. The layered architecturénef t

. : : > 12 > avBT gystem stacks one or two feature construction stages, each
ing layers of feature detectors with the aim of building “pe ¢ \vhich consists of a layer that transforms a number of

feature representations have been proposed. The domingpj i image representations into a collectiorfeziture maps
method for training deep feature construction systemses th 4 5 pooling layer that combines the values over local
Alexandros Agapitos is with the Complex and Adaptive Systdmb- neighbourhoods of a feature map using an average operation.

oratory, School of Computer Science and Informatics, Usite College 1 N€ ﬁn?‘l layer Of the architecture is a regularised logistic
Dublin, Ireland. (email: alexandros.agapitos@ucd.ie). regression classifier.

I. INTRODUCTION

With the advent ofleep learnind3], schemes for stack-




To our knowledge, this is the first ever work that adterminals representing extracted features or pixel iritgns
dresses the method of greedy layer-wise supervised trainivalues to a real-valued output at the root of the expression-
as a form of deep learning with GP. For an initial step towardee, which is further mapped to a classification label. Tdvo o
deep GP systems for object recognition, we are addressitige most recent systems based on an architecture that allows
the following research questions: for simultaneous feature construction and classificatian a

. . reported in [13], [14]. Both systems successfully evolved

1) Is GP able to evolve image-feature representationgandalone classifiers from raw pixel-based input using the

from low-level image data (i.e. pixel intensity val- c|assification accuracy as the fitness function.
ues), which perform better in object recognition

tasks than basic hand-designed features based on The work of [10] was one of the first to propose an
statistical moments? architecture in which a feature extraction program is inde-
2) What is the effect of greedy layer-wise Supervise@endently_ evolved from the classification program. In or_der
training? Is there any advantage of using a deel f[rst train the feature extraction stage,_the human _|ﬂeet|
feature representation, that is a system architectufégions of “feature” and “non-feature” using a graphicaus
with two successive stages of feature constructiomjterface. A program is then evolved to detect such features
rather than an architecture with a single-stage? The evolution of a classifier that uses the “pre-trained”
feature detectors is based on theostingmethodology, in
The rest of the paper is organised as follows. Section Which partial solutions are trained on different distribat
presents a brief overview of object recognition in GP. Se®f training examples and are gradually added to the overall
tion 11l describes the proposed method. Section IV outlineslassifier.
the experiment setup. Section V presents the experimental

results, while Section VI concludes and proposes future A modular feed-forward architecture is reported in the
work. work of [15]. It is defined by cascading a transformation

layer, a pooling layer and a classification layer. A moving-
window-based extraction of image patches is combined with
an evolved transformation to convert an original image into
Object recognition is an area that has received songetransformed image. The transformed image is then down-
attention from the GP community. The purpose of this sectiopempled using several statistical moments, and the resulta
is twofold: it first discusses GP systems in terms of featuréectorised representation of the transformed image is used
construction; it then briefly reviews that main program archas input to a Nearest-Neighbour classifier or a Decision-
tectures that have been used for object recognition to-datdree classifier. The system is required to evolve an image
representation from raw pixel-based input that is effedyiv
A. Feature construction classified using a very simple classification algorithm.

We identify two major classes of studies: (1) studies The vast ma_jority of existing systems evolve stan_dalone
that evolve symbolic expressions composed of predefin@ﬁﬁ()grams that simultaneously perform feature extractimh a

features; (2) studies where the evolved symbolic exprassio¢'@ssification in a single evolutionary run. In addition, sho
are composed of raw pixel-based input. problems tackled are binary classification problems that

require the output of the program to be mapped to a class
The first category of studies use GP terminal setgbel by setting the value of zero as the discriminating
that contain predefined domain-independent features endfreshold between classes. Evolving multi-class classifie
domain-specific features. This involves pre-processiragen in often difficult with standalone programs; addressing the
data with low-level feature extraction algorithms. The k&r problem via the evolution of a collection of one-vs-the-
of [9], [10], [11], [12], to name some of the most recentrest classifiers often improves classification performance
ones, fall in this category. How can we make GP classifiers scale-up to hundreds or
%/en thousands of classes? See for example the ImageNet

Il. OBJECT RECOGNITION WITHGP

The second category concerns the evolution of obje
classifiers that use raw pixel intensity values as input. Th
majority of function sets use operations that are statibtic
moments parameterised with (a) position coordinates and (%a
size of an image patch that is used as input to the operation.
Evolution allows for these parameters to be optimised al!- DEEPEVOLUTION OF FEATURE REPRESENTATIONS

classifier programs are getting fitter. The works of [13],][14  The architecture of the system, which is inspired by [1],

fall in this category. In addition, there have been systemas t i 5 stack of layers defined in a bottom-up fashion as follows:
use terminal sets containing as many variables as the number

of pixels in an image patch of fixed size; for arecentexample 1) Filter bank layer.

ataset with 1000 classes (http://www.image-net.orgther
altech-101 dataset with 101 classes (http://www.vision.
ltech.edu/Imag®atasets/Caltech101/).

see [15]. 2) Transformation layer.
3) Average p_ooling (i.e. down-sampling) layer.
B. Object recognition system architectures 4)  Classification layer.

The dominant program architecture in evolving objec ;
classifiers with GP is a standalone expression-tree thatis fk Filter bank layer
sponsible for simultaneous feature construction andiftass A filter bankis a collection of filters, which are repre-

cation. Arithmetic and other operations are used to transfo sented as 2D arrays of values (i.e. weights) that are used



as kernels in 2D discrete convolution operations [1]. There  soucepixsi
exist various choices for the filters composing the bank in

this layer (for a description see Section 1.1 in [1]). Thesme ¢

either be predefined or randomly initialised and subsedyent

learned. In this initial implementation the values of the 2D

arrays areinitialised to random values and they are kept

fixed (no evolution takes place on these parameters). The
justification of this choice is twofold.

Convolution kemnel

First and foremost, it has been shown [1], [16] that con-
volutional pooling architectures enable even randomevalu
filters to perform competitively against systems where the
filter banks are learned in an unsupervised or supervised Wa&yy. 1. Sample generation of & x 5 feature map as the result of the
The authors in [1], [16] conclude that while filter fine-tugin 2D discrete convolution of & x 7 input image with a3 x 3 filter. The
is essential to achieve state-of-the-art performanceﬂthjer center e_leme_nt o_f the filter is placed_ over the source pixet Walue of the
contribution to a system’s performance can be attributed ?3'8;’10{'02)(5;r(tgifle)afzg T??f(%‘inogicféﬁegﬁs{]_)ziog O%ﬁ]re
the choice of its architecture in terms of different ways fotomplete feature map is generated by placing the centertef Bver all
cascading modules of transformation and pooling. possible source pixels in the input image with the step-sizene pixel. The

L. . . . surrounding border pixels shown in the feature map are attiy discarded
Second, as an initial step, we are interested in studyingsulting in5 x 5 representation.

only the evolution of the transformation layer. This is seme

what of a more controlled experiment with a more limited

search space as opposed to a system that allows for #henotes, for example, a transformation layer with a reeepti
evolution of both the filter bank and transformation layers.field size of3 x 3.

destination pixel

The filter bank is a collection of K filters (also known )
askernely {ki,...,kx}, where filterk; € Rv*» with «» C. Average pooling layer
referred to as theeceptive field sizeThe input to the filter
bank layer is an imagdmg € R"*", represented as a
n x n _matrix of pixel intensity values. The output is a 3D
representatioiin —w+1) x (n —w+1) x K (with K filters).
Each(n—w+1) x (n—w+1) feature mapfm, is generated o : ; P
using a 2D discrete convolution operatign*Img) between wi%g\z‘? Aﬁl7je§%ﬁgfevér;e;?/gzggés p%OL"iw;o:;n i;fﬁgg:'endg in

the filter k; and the image. The convolution operation move?igure 2. An average pooling layer with &4 x 4 down-
the w x w filter across the image with a step-size of On%ampling. is abbreviated t&“*

pixel. Figure 1 illustrates a sample generation of a feature
map through the 2D discrete convolution operatioin the o
following abbreviation, the superscript denotes the réigep D- Classification layer

field size of the filters, while the subscript denotes the nemb 11 classification layer receives & s x m representation,

of filters in the filter bank. For examp@(f’ox")). denotes a where s x s is the dimensionality of a feature map and
filter bank layer with 10 filters of dimensionalifyx 5. The m the number of channels (i.e. feature maps). This layer

This layer is used to reduce the dimensionality of the
representation via down-sampling. An x m feature map
down-sampled with @ x d pooling window will result in a
(m/d) x (m/d) feature map. Each output value gs;;, =

output from this layer is 10 feature maps. accepts feature maps that were already processed by evolved
programs. The system is able to use either a single evolved
B. Transformation layer program for classification, in which case = 1, or use mul-

The transformation laver receives an arravnoffeature tiple evolved programs, in which case > 1. The vectorised
mans. that is al x d x yre resentation Wh)g;z w d is representation of each feature map is first generated,stzat i
PS, m rep : vector inRY, whereN = s-s. Givenm such vectors, a total

the dimensionality of each feature map. The transformatiof} "\ fearyres are used for classification. We employ a
process extracts patches from this 3D representation usi ularised multinomial logistic regression classifiehiat

a moving-window-based approach of step-size of one PIX8% trained with a cross-entropy loss function using a Quasi-

Eicrgfeatgcehﬁzlg'g?zegﬁgm Xaz ;;]én nvl\J”rtrTbZr rgiﬁgg;glssA Newton optimisation method. The ridge parameteis set
p m ", to the value 0f0.001 and the number of iterations tW00.

patchp € Rw*w>m s transformed intgy € R via an evolved An exampl e
. pwXwxXm . ple classification layer that aggregates featuoes fr
programf : R — R. The program outpuy is then 3 channels is abbreviated &)

passed through the hyperbolic tangent function before it is
assigned as the intensity value of the destination pixehén t _ ) o
transformed feature map. By sliding a moving window withE. Greedy layer-wise supervised training

asttep—sflze of do_n?, the ent|rel|npljit reprefentauamodtxtm Different object recognition systems can be assembled
is transformed into &d —w+1) x (d—w+1) representa 'ON- by cascading the above-mentioned layers in different ways.
Figure 4 illustrates an example. The abbreviatibf>® 0 example, F — T — P — C is a basic feed-forward object

Figwe  taken  from hitps//developer.apple.com/libiiasy/ recognition system that uses a filter bank layer, followed by

documentation/Performance/Conceptual/vimage/Cotiooi®perations/ a transformation layer, an average down-sampling layer and
ConvolutionOperations.html. Last accessed in 14/01/2015 finally a classification layer.




Source Down-sampled

Fig. 2.  Example of average pooling of 4 x 4 feature map with a
2 x 2 pooling window. The pooling window is positioned on all pibés

non-overlapping areas of the feature map, computing theageeof pixel

intensity values from the extracted patches. The resulgpresentation is
a2 x 2 feature map.
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Fig. 3. Set of hand-made features. 74 feature areas whenéfiei@ and

the mean and std. deviation of each calculated, resulting4B features.
The first set of features consist of subdividing the image ih6 non-

overlapping squares of size 7x7 pixels. An example of thpe tyf feature is
highlighted above in the square F G L K. The second set of featcontains
9 overlapping squares 14x14 pixels in size, seen above imittdighted

square B D O L. Finally the image is divided into 49 non-ovepiag

squares of size 4x4 pixels. This type of feature is highéighih the square
A 18 7 above.
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Fig. 4. Example of &"(3%3) transformation layer that transformsl@ x

10 x 2 representation into & x 8 representation. The input to the evolved

program is a 3D array of pixel intensity values representirgtwo extracted
3% 3 patches. The sample program adds the maximum value fronetioad
matrix to the value in position (0, 2) from the first matrix.eSater section
for description of primitive elements used by evolved pewgs.

Fes /7966 al
67578634 gs
L7290/ &Y ¥ 6
N7 90/ ¢ %94
Tl ¥44d /75 &0
1789265 %\ 97
AR2AADI#4#Y §O
023 073857
Ol b4 bo2y¢?d
772810649806/

Fig. 5. Sample images from MNIST dataset.

This section describes the training protocol considered fo
learning deep feature representations with GP. The algorit
which is based on [6], isupervisedgreedy andlayer-wise
The general approach is to train each new layer of image
transformation in an independent training run, taking each
time as input the output of the last of previously trained
transformations. Every successive transformation lageres
as pre-training initialisation of a newly-invoked traigin
procedure with the aim to learn a stack of gradually better
representations.

During the first stage of evolution, we evolve the first
transformation layefl's;,4.4 USING the architecture of F —
Tstagea — P —C ). A placeholder il qge4 allows to test
different programs in terms of their ability to generateeeff
tive image representations (i.e. feature maps). Whapper
approach to feature map evolution is taken, in which the
logistic regression classifi€r is wrapped around the feature
map produced by a candidate program, withdlassification
error rate accruing from the classifier assigned as the fithess
of the candidate feature map. At the end of the evolutionary
run a number of best-evolved feature maps (i.e. maps that
were generated fronk best programs) of dimensionality
d x d are aggregated in A x d x d representation abbreviated

to TStageA,K .

In the second stage of evolution, a second transformation
layerTs;q4e5 is €volved using as input the output of the first
evolutionary run, that is & x d x d representation of best-
evolved feature maps. A new, independent evolutionarysun i
invoked using the system architectife,gea, x — T'stageB
— P —C™. Note that the layer F used in the first stage is
now replaced byl'siqqe4,x- The rest of the procedure for
evolving T'stqgep remains the same as above.

IV. EXPERIMENT SETUP
A. MNIST dataset

We tackle a very popular Machine Learning benchmark
(10-class classification), the MNIST benchmark, which con-
tains 28 x 28 grey-level images of hand-written digits. The
dataset containg0, 000 training examples and0, 000 test
examples, and it is publicly available from http://yanoua.
com/exdb/mnist/. In the current work we use the complete
test set, but only train on the fir80, 000 training examples.
This was chosen in order to reduce the memory requirements
of our initial system implementation. A sample of training
images is given in Figure 5.



B. Systems under comparison y;. The slopeb and intercepta are calculated so as to
. . . ) minimise the squared error betwegp and a + bp;. That

We are experimenting with four different systems for, " 1SN o — ) (i — ) S, (i — )2, where
evolving hand-written digit classifiers, specified as foko p,’, Y denote the éveragélprogram ozu:tbutzand a\;erage target

1) Single-stage transformation systen{SST). Its archi- value respectively. The means squared error is defined as
tecture is defined ag\S*® — 7(5>x5) — p(4x4) _ () The f]lvz;':l(a + bpi — yi)?. (i) STGP.,. The third fitness
first layer is composed of a filter bank of 50 filters withfunction takes the program output and directly maps it to
5 x 5 receptive fields, resulting in 24 x 24 x 50 representa- @ class label using the classification map specified above.
tion. 10 filters were generated from each 6f—1.0,1.0), The classification error rate is used as fitness function.

U(=5.0,5.0), UD(1,5), N(1.0), N(5.0), where U(z,y) 4) A GP system that evolves programs taking the form
denotes uniform sampling of real-valued numbers within thgt gecision-treeGPDT). A decision-tree is a hierarchical
[z,y] interval, UD(z,y) denotes uniform sampling of dis- gir,cture composed of nestéd - t hen- el se constructs,
crete numbers i, y] interval, andN (x) denotes sampling each taking 3 arguments. The first argument is a predi-
from a Normal distribution with a standard deviation set tQ.4¢e expression that is evaluated to either true or false.

x. The same filters are used in all independent evolutionage second and third arguments are either class labels or
runs. The transformation layer uses & 5 receptive field, _{ hen- el se constructs. If the result of the predicate’s
which further reduces the resolution of the representatiq,5iation ist r ue then the second argument is returned:
to 20 x 20. The down-sampling layer uses an averaggse the third argument is returned. The fitness function

pooling of 4 x 4, which produces a final output feature seq for evolving decision-trees is the classificationrenate
map of size5 x 5. Based on a single program (i.€"), described above.

this generate®5 features that are then fed to the logistic
regression classifier that produces a vector of 10 outputs
representing the probability distribution over class lalfee. - GP Systems setup

{0,...,9}). The classification error rateis used as fithess  Taples | and Il summarise the functions and terminals

function for evolving the transformation layer. This is @efil  respectively. The arithmetic functions of division, logiam

as1.0 — coxect, wherecorrect is the number of examples and square root are protected. Both SST and DST sys-

that are correctly classified andf' is the total number of tems use the same functions and terminal elements. The

examples in the training set. function set contains arithmetic and image-based funstion
2) Double-stage transformation systen{DST). The sec- Mn, Max, Mean, StdDevi ation, Entropy, each re-

ond stage feature construction system is fed with the outpﬁggse Frziavtec r?rg'lqhmeen;zc c;l;]r:je Ilr:ﬁ:j a;gld:?ﬁnta;zprf?ffﬁn;_ an

of the first stage, denoted &%44c4.50- The subscripto
denotes that the second stage uasgés thesbestolved feature IUMENtS represenKypperLeft: Yupperseft: XLowerRight,

maps from the first stage. The overall architecture is define%&owemight Coor di nat e values_ re.spectlvely..These fP”C'
asTstagen 50 — TO*?) — P44 _ (D) The transformation Ions return the respective statistical operation appted

layer uses @ x 5 receptive field size operating & x 20 the rectanglein the | nagePat ch that the four parameters

feature maps, which further reduces the resolution of t ecify. The smaller of the tw& values is interpreted as

representation ta6 x 16. The down-sampling layer usesZ UprperLeft. and the larger is interpreted @8owerright-
an average pooling of x 4, which produces a final output The same is done for thg values, thus the four parameters

feature map of size x 4, totalling 16 distinct features for gloways spetC|fyta Iega: rectanglte ||r|1 tlheraa?ePatgh. ﬂ:jeth
logistic regression classification based on a single progra ordi nat € terminals are not allowed 10 go beyon €

The classification error rate is used as the fitness functionI magePat Ch. boundaries, so given receptive f|e_|ds of size
5 x 5 used in the transformation layer€oor di nat e

3) A standard GP system that evolves programs with reatalues are generated within the ranf@ 4}. Finally, the
valued output (STGP), which is mapped to a class label vialant ensi t y function returns the intensity value of a pixel
classification mag11]. This method positions class regionsin anl nagePat ch. Its second and third arguments specify
sequentially on the floating point line. An input is classlfie X,Y Coor di nat e values respectively.
to the class of the region that program-output falls into. We

: : : : : : The STGP system uses arithmetic functions, while
defined the following map using the identical interval of . . - o
1.0 between class label§l € (—o0,1.0), 1 € [1.0,2.0), GPDT uses both arithmetic and decision-tree functions. 148

| mmgeFeat ur e terminals are used in STGP and GPDT
g g [[%8’ ?;8% ?; E [[?;'%’ Lé%)) L;EE [Eg%’ 59%))’ 5966[[590;6023 systems. These are the means and std. deviations of certain
SN o AR ’ : gions in the28 x 28 example images. The way in which
e regions are defined is illustrated in Figure 3. In additio
eIﬁandDoubI e terminals are used by STGP, while GPDT
uses bottRandDoubl e andCl assLabel terminals.

Using this program representation we experiment with thre[ﬁ
different fitness functions(i) STGP,,s.. The first fithess
function takes the form of mean squared error betwe
program outpup; and desired outpuj; for the i*" training
example. Given a set @f examples, this is formally defined SST uses a population size aH0 evolved for 100

as vazl(pi —y;)?, wherey; = classlabel; + 0.5 with  generations. DST takes as input the best feature maps
classlabel € {0,...,9}. (i) STGP,,, /- The second evolved by generatiod0 of SST and evolves them for an
fitness function is based on the first one, but performs extra50 generations, thus the computational effort of the two
linear bias correction op; (known as linear scaling in the systems is the same. Both systems use tournament selection,
GP literature) prior to calculating its squared deviatioomi  with a tournament size of 4. On the other hand, STGP



TABLE I. STRONGLY-TYPEDFUNCTIONS . .
The selected sample size fluctuates around the targetsize

,Ff-?ﬁ“m:- Argument(s) type Return type while the inclusion ofS in the calculation ofP;, ensures
rithmetic H H y H
m double, double double that the expected selected subset size is of target size. If a
e, log(x), sqrt(x), sin(x), tanh(x) | double double example is selected to be included in the subset, the values
of m andn are initialised to zero.
Image-based
Min, Max, Mean, StdDev, Entrop !mage, integer, integerl double Once the first random sample of sizehas been gener-
integer, integer .
Intensity image, integer, integer double ated using theR PG method, a number of” = 3,000 — T
Decision- examples are randomly picked independently for each indi-
ecision-tree . . . ..
-Then-Else boolean, integer. integer vidual. RPI uses a uniform sampling amo#fg, 000 training
integer examples. The process ensures that heG and RPI
and, or, xor boolean, boolean boolean samples form disjoint sets
not boolean boolean ’
< <, >, > double, double double
V. RESULTS
TABLEIl.  STRONGLY-TYPEDTERMINALS We performed0 independent evolutionary runs for each
system on Section IV-B. Training is based on dynamic
Terminal Type Description

RandDouble | double | randomly generated double in [-1.0, 1.0] interval samples _drawn from the corr_]ple_te Set&m" 000 exa.mples
ImageFeature| double | means and std. deviations of certain regions (Figure 3)aS described above. Generalisation performance in assesse
'éﬂaggPatch image | 2D a[ffayhzighht X]width O[f pi;;el if;:ensini values  vig the classification error rate on the complete test set of
oordinate integer | = € [0, width — 1] ory € [0, height — 1 . . . P .
ClassLabel | integer | class label in{O, ... , 9} 10,000 examples that is provided in the MNIST distribution.
For the sake of brevity we will refer to it simply as error rate
in the remaining of this section.

and GPDT systems usk 000 individuals evolved for100 Figures 6(a),(b)(c) show the evolution of error rate for
generations. The population size was deliberately seteighST' G Prse, ST GPyse 15, andSTG P, respectively. Results

after obtaining very poor preliminary runs with a populatio suggest thatSTG P, outperforms the rest of the systems,
of 500 individuals. Tournament size is set to 7. attaining a median error rate 0f63 at generationl00 as

o _ opposed to the median values @8 for STGP,,./;s and
All four systems were initialised with the ramped-half-g 82 for ST'GP,,,.. We can conclude that the fitness function
and-half method with depths between 2 and 6. The maxiased on the training classification error rate is the most
mum allowed depth during evolution was set to 12. Subtregppropriate when evolving classifiers in the form real-edh
crossover {0% inner nodes]0% leaf nodes), subtree muta- output expression-trees, which require a classificatiop ma
tion (max. depth of random tree set to 4), and point-mutatiofyr mapping program-outputs to class labels. Furthermore,

(prob. of a node to be mutated settd)/TreeSize) were |inear scaling (Figure 6(b)) offers improvements over MSE
applied with probabilities 080%, 40% and30% respectively. alone (Figure 6(a)).

Elitism of 1% of population size was used.

In the case of GPDT (Figure 6(d)), the median error rate
. . - of 0.48 by generation 100 outperforms &lll’'GP systems.
D. Dynamic sampling of training examples This means tha52% of test cases are correctly classified.
We used a variant obynamic Subset Selectiowhich It seems that the decision-tree representation results in a
is a hybrid betweenRandom-per-GeneratiofRPG) and Mmore evolvablesystem for the case of this multi-category
Random-per-IndividugRPI) methods. A random samplg, classification task. In fact, there is a lack of studies in
of size 3,000 for generationg is made up of two samples the literature that deal with many classes, and the issue
RPG, and RPI,;. RPG, is a random sample that is usedof classifier representation and scalability to such proisle

by all members of the population, whileP1I,; is a random surely warrants further investigation. A final observatibat
sample independently drawn for individugal is consistent in all four standard GP systems is that theve is

overfitting; the error curves take the form of monotonically

The algorithm for RPG involves randomly selecting a decreasing functions of the generation number. It is tioeeef
target numberS = 2,500 of examples from the complete jnteresting to study longer evolutionary runs in the future
training set of N = 30,000 examples per generation, with a i .
bias, so that an example is more likely to be selected based Figure 6(e) shows the evolution of error rate for the case
on itsdifficulty. Each training exampleis assigned a weight of SST using a single best-evolved individual to generate
w; = (1.0 + %)d, wherem is the number of individuals fe_at_uresmthe classification I_ayer. Med|an error_ratehea@
misclassified the example, is the number of individuals Minimum of0.076 by generation 50, at which point evolution
that tackled the example at a particular generation, @nd S€ems to stagnate and slight overfitting is evident thezeaft
is the exponent of the polynomial weighting scheme set t6igure 6(f) shows the evolution of error rate for the case
the value of9 in our experiments. At the first generationOf DST, using the best-evolved feature vector at the final
both m andn are set to the value of zero. The probabilityclassification layer. By generaticit, a median error rate of

that a training examplé will be selected at generatianis 0.070 is obtained, while by generatiotd) the median error

given by P, = Z}u\?g- . We iterate through the training set rate is0.069. Overfitting is observed past generati¢ih

Vi:1<i<N, pi?:zlfinégat each iteration a random number We performed aNilcoxon rank sum tedb test thenull
in the range of [0.0, 1.0], and selecting exampie P;; > .  hypothesis that error rate data at SST/Gen50 and error rate



data at DST/Gen30 are samples from continuous distribsition VI. CONCLUSION AND FUTURE WORK

with equal medians, against tha#ternativethat they are not. Thi : :
; . . . is paper was motivated by the latest research in de-
The obtainegb-value is0.0011 with DST outperforming SST. veloping efficient learning algorithms for deep architeetu

An additional Wilcoxon rank sum test between error rate datgf feature construction systems, since these has beenrprove
at SST/Gen50 vs DST/Gen40 obtaineg-aalue of0.0007 to be much more representationally expressive than shallow

with DST outperforming SST. ones. In this work we demonstrated the successful applitati
) ) ) of greedy layer-wise supervised training of a deep, feed-
Having evolved a population of programs generating thgyward GP-based system for handwritten digit recognition
transformed feature maps, we were tempted to use more thefle proposed system, operating on raw pixel-based input,
the single best-evolved program to generate features in thgtperformed several standard GP system setups with hand-

classification layer. We decided to use the 5 best-evolved gesjgned features. Results also revealed that multi-oateg
10 best-evolved programs from each population. In the caggssification is a very hard problem for standard GP that use
of 5 programs, this led ta5 - 5 = 125 features in SST, and 5 standalone expression-tree to handle all different etass

in 16 - 5 = 80 features in DST. Additionally, in the case of
10 programs, this led t@5 - 10 = 250 features in SST, and
in 16 - 10 = 160 features in DST.

[ ]

The results for 5 best programs are illustrated in Fig-
ure 6(g). Contrasting between Figures 6(e) and 6(g), we
observe that the error rate is significantly improved from a
median of0.076 to the value 00.046 in SST/Gen50. In the
case of DST/Gen30 the error rate is improved from a median
value of0.070 to the value 00.045. However the differences
in median values between SST/Gen50 and DST/Gen30 are
not statistically significant in Figure 6. Why multi-progna
features didn’t benefit from two stages of transformation? e
The observation that only the single best-program evatutio
significantly benefited from DST can be attributed to the
fact that the fitness function was rewarding the evolution of
classifiers that were exclusively using either 25 features i
SST or 16 features in DST. We believe that the evolution
of sets of multiple programs can benefit from a two stage
transformation only in case where the system is delibgratel
evolved towards that goal; this means that fithess is based
on the performance of a logistic regression classifier that
explicitly use a bigger number of features.

In summary, using 5 best-evolved programs can be berh]
eficial to the generalisation performance as opposed to a
single best program. But using 10 best programs (Figure 6
worsens generalisation compared to 5 best programs. The
aggregation of several features extracted from differestb [2]
evolved programs is currently naive, given that we expyicit
evolved towards classifiers with either 25 or 16 features
This is main reason of overfitting that was observed in 10[3]
best programs as opposed to 5 best programs. Nevertheless,
why did 5 best programs performed better that the singl%
best program? It seems that they benefited from the dynamic
sampling of a portion of training examples independent for
each individual, which allowed for some sort of semantic[5]
diversity to be maintained in the population. The logistic
regression classifier was able to leverage on these diverse
features, and a more powerful model was obtained. (6]

Finally, Figure 6(i) shows the error rate of SST/Gen50 vs.
the error rate of DST/Gen30 in 30 independent evolutionary?]
runs for different number of best-evolved programs used for
classification. In the case of single best-evolved program%8
two layers of transformation is critical in improving perfo 1
mance. In the case of 5 or 10 best programs, the results are
mixed.

We are barely scratching the surface of this exciting niche
of research. Some future research questions are as follows:

What is the impact of different forms of pooling, i.e.
max-pooling layer? (see Section 2 in [1]).

How can we evolve towards cooperative sets of
programs in order to involve more than a single best-
evolved program for classification? In this context,
how can we prevent complex co-adaptations of the
programs in a population (that may lead to overfit-
ting) so as to evolve independent feature detectors?

The literature suggests that convolution is an ar-
chitectural feature that plays a significant part in
providing good classification performance, and was
used as the first layer of the object recognition
system. How can we adapt the filter bank during
evolution?

We are currently focussing on the method of stacking
single-layer image transformations. How can we
address the joint, simultaneous evolution of all the

layers?
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