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Abstract Recursion is a powerful concept that enables a solution to a problem to be ex-

pressed as a relatively simple decomposition of the original problem into sub-problems of

the same type. We survey previous research about the evolution of recursive programs in

tree-based Genetic Programming. We then present an analysis of the fitness landscape of

recursive programs, and report results on evolving solutions to a range of problems. We

conclude with guidelines concerning the choice of fitness function and variation operators,

as well as the handling of the halting problem.

The main findings are as follows. The distribution of fitness changes initially as we

look at programs of increasing size but once some threshold has been exceeded, it shows

very little variation with size. Furthermore, the proportion of halting programs decreases as

size increases. Recursive programs exhibit the property of weak causality; small changes

in program structure may cause big changes in semantics. Nevertheless, the evolution of

recursive programs is not a needle-in-a-haystack problem; the neighbourhoods of optimal

programs are populated by halting individuals of intermediate fitness. Finally, mutation-

based variation operators performed the best in finding recursive solutions. Evolution was

also shown to outperform random search.
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1 Introduction

The vast majority of evolved programs by means of Genetic Programming (GP) [24,32]

are based on a functional, expression-tree representation. GP has produced some impressive

results but it still has significant problems with scalability. Most programs are of constant

time-complexity, rather than being general programs with non-trivial control structures such

as conditionals, iteration and recursion. Investigating ways to best evolve recursive programs

will arguably expand the class of problems that GP can solve.

Recursion is a powerful divide-and-conquer computer programming concept. It solves

a problem by reducing it into smaller/simpler instances of itself, solving those instances,

and combining the solutions obtained. Most programming languages support recursion by

allowing a call to a procedural abstraction (i.e. function or method) to appear in its own

body, enabling it to call itself. Every recursive function definition has at least one base case

and one recursive case. A base case deals with input representing the simplest instance of

the problem; it provides a solution for that instance and causes the recursive function to

terminate. A recursive case deals with any other input, and its purpose is to reduce interme-

diate problem instances towards the base case. The representation power of recursion allows

for the synthesis of a particular type of recursive program, called tail-recursive, which can

be directly translated into a program with iteration. In tail-recursion the last statement in a

function is a recursive call.

1.1 Evolution of recursive programs with tree-based GP

There exist two dominant approaches to the evolution of recursive programs with tree-based

GP. The first uses explicit recursive calls that enable an evolved program to call itself. All

that is required is a recursive primitive in the function-set, whose signature (i.e. return type

and parameter types) is the same as that of the evolved program. After evaluating the argu-

ments of a recursive tree-node the evaluation flow is transferred to the root of the expression-

tree. Importantly, an explicit base case is required to be evolved as part of the evolved pro-

gram in order for it to halt.

The second approach is based on higher-order functions that provide an implicit, bounded

form of recursion [1,5,27,45–47]. A higher-order function requires two arguments: a data-

structure and an operation. It recursively processes the constituent elements of the data-

structure through the use of the combining operation, building up a return value. The code-

content of the combining operation is subject to evolution. The advantage of this type

of building-block is that it encapsulates the recursive execution, and therefore the overall

evolved program does not require an explicit base case in order to terminate; recursion is

automatically terminated when all elements of the data-structure have been processed, and

execution flow is transferred back to the node within the expression-tree where the higher-

order function is rooted. Higher-order functions are a powerful addition to standard GP,

which enables the evolution of programs with greater than constant-time complexity, al-

though the evolved programs are not actually recursive programs. Higher order functions

are similar to bounded iteration schemata of [17] and for-each-loop constructs of [10,
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11]. Their main disadvantage is that they require a significant amount of domain knowl-

edge since different problems have different repetition patterns, and their solution requires

different higher-order functions.

Higher-order functions are only applicable to a limited number of problems. Not every

solution, which is effectively represented with explicit recursive calls, can be represented

using higher-order functions. Evolving recursive programs with explicit recursive calls is

arguably the most general and expressive approach between the two. Certainly, higher-order

functions can be used to complement the expressiveness of programs with explicit recursion,

and this was shown to be fruitful in the evolution of efficient sorting algorithms [1]. However,

it is the evolutionary synthesis of computer programs with explicit recursive calls that is our

focus here.

1.2 The troubling aspects of the space of recursive programs

The space of recursive programs is fundamentally different from the space of Boolean or

symbolic regression programs with constant time-complexity. The major difference is the

presence of non-halting programs. The two requirements for a recursive program to halt is

a base case, as well as the convergence of program arguments (during successive recursive

calls) towards that base case. The halting problem presents a stumbling block for the effec-

tive evolution of recursive programs. Research has shown that in Turing-complete fitness

landscapes (linear programs with finite memory, conditional branches and jumps) the pro-

portion of halting programs falls towards zero with increasing program size [23,25]. This

confirms the belief that Turing-complete program spaces are hard to search. The halting

problem also raises the question of how to assign fitness to a program which may recurse

indefinitely.

In addition, it has been argued [8,42,45] that the difficulty of evolving recursion is as-

sociated with the weak causality of recursive programs. The property of causality relates

changes in the structure of an object with the effect of these changes in the behaviour of

the object [33]. Specifically, evolved recursive programs are believed to be very sensitive

to the application of variation operators, meaning that small changes in the structure of an

expression-tree may have a large effect on program semantics and therefore fitness, which

may mislead the search process. Fitness functions may be deceptive in the sense that they do

not reflect the structural proximity of an individual to a solution. In a preliminary study [5],

random walks were used to study the landscape of programs composed of higher-order func-

tions, and therefore guaranteed to halt. Results demonstrated that the landscape is difficult to

search since a single random step is very often adequate to severely degrade program fitness.

Several authors [28,29,40] have discussed the difficulty of designing a fitness function

able to partially reward a recursive program. An optimal program requires both base and

recursive cases, as well as their appropriate interplay, and it is unclear how to penalise non-

optimal individuals that contain either of these components but not both. For example, a

program that contains a correct recursive case but misses the base case will result in infi-

nite recursion, and will often be heavily penalised as it returns an error for any input case.

This may disorient evolution, and may result in premature elimination of programs with

standalone recursive cases from the population in case where low mutation probability is

used [2].

Finally, a discussion of the differences between the topologies of the space of functions

(programs of constant time-complexity) and the space of algorithms (programs of higher

than constant time-complexity and state variables) is presented in [37]. Standard GP works
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by searching syntactically nearby algorithms, and relies heavily on the notion that if an al-

gorithm is successful then other algorithms “near” it in the space of algorithms will have a

higher chance of being successful than algorithms chosen at random from the space. How-

ever, when a program representing an algorithm is changed in some small way, the effect of

that change in semantics is compounded on each new iteration of the program’s execution.

1.3 Explicit recursion in Genetic Programming: A Survey

Koza (1992) [19] (chapter 18.3) was the first to study a very limited form of recursion for

evolving a program that generates the Fibonacci sequence. The evolved program was given

ordered input values of the sequence, and made use of a sequence referencing function to

access previously computed values in the sequence. Explicit recursive calls were not allowed

in this work.

Nordin and Banzhaf (1995) [30] evolved Turing-complete programs for a register ma-

chine using linear GP. The system enabled recursion synthesis by having local registers

initialised to an evolved Automatically Defined Function (ADF), enabling the function to

call itself.

Brave (1996) [8] evolved recursive programs for tree search. A non-terminal element

was made available in the function-set, allowing the evolved function to call itself. Different

program architecture setups including basic GP and GP with ADFs were investigated. To

handle infinite recursion, the maximum number of allowed recursive calls was limited to the

depth of the tree being searched.

Whigham and McKay (1996) [40] tackled the problem of evolving a member function.

This is a function that takes as input a list and an element and returns true if the list

contains the element, and false otherwise. The work used directed mutation operators,

which are both problem specific and incorporate knowledge about the solution. Recursion is

enabled via a recursive function-set element. Whigham and McKay were unable to evolve

a recursive solution to the problem. They mainly attributed this result to the inefficiency

of the fitness function to partially reward correctness, i.e, a program that contains a correct

recursive case but misses the base case. Infinite recursion is handled by setting a maximum

number of evaluation steps. If the limit is reached, fitness evaluation is abandoned, and an

individual is assigned the worst possible fitness value.

Wong and Leung (1996) [43] evolved recursive programs for the Even-n-parity problem.

A logic grammar in used that includes a rule that enables recursive calls, and another rule that

enforces a termination condition. However, the convergence of the arguments of recursive

calls towards the termination condition is not guaranteed, and a recursion limit is put in

place to terminate non-halting programs. Wong and Leung demonstrated that their system

was able to find the solution to the general Even-n-parity problem more efficiently than

Koza’s ADF approach [20]. In another study, Wong and Leung [44] tackled the evolution of

Even-n-parity programs from noisy examples. Three experiments were performed to study

the impact of noise in training examples on the speed of learning. The study confirmed that

GP can evolve recursive solutions from noisy training observations, and that the amount of

computation correlates positively with the level of noise.

Huelsbergen (1997) [15] evolved machine-language programs for generating the se-

quences of square, cube, Factorial, and Fibonacci numbers. Evolved programs maintain a

program counter. This is an integer that selects an instruction to fetch and execute. Four

branching (jump) instructions modify the program counter to point to a new instruction, and

have the ability to emulate recursive calls by transferring the execution flow to the start of
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an evolved program. Huelsbergen demonstrated the effectiveness of a hybrid local/global

search system (crossover and hill climbing) over mere random search. The halting prob-

lem is handled by placing a limit to the number of instruction executions. The interpreter

evaluates a n-instruction program with respect to an m-register input state for a number of

evaluation steps. An Out instruction appends the value of its register argument to output

stream that forms the basis for computing fitness.

Nishiguchi and Fujimoto (1998) [29] proposed two GP systems with niching for evolv-

ing programs that generate the Fibonacci sequence, and programs for searching maze-like

maps. The study argues that diversity is hard to maintain during recursive program evolu-

tion mainly due to the inability of the fitness function to assess partially-correct programs.

This impairs the continuity of the fitness landscape and makes evolution susceptible to lo-

cal optima. In the proposed method, three different niches in the form of sub-populations

are maintained: one with non-recursive individuals (niche 1), one with non-halting recur-

sive individuals (niche 2), and one with halting recursive individuals (niche 3). Selection is

performed on a per-niche basis, while crossover is performed between individuals of differ-

ent niches. Recursion is implemented using a recursive function-set element. Non-halting

individuals in niche 2 are assigned the average fitness of individuals in niches 1 and 3.

Clark and Yu (1999) [13] evolved recursive programs for the mapcar and nth-3 func-

tions. The mapcar function takes two arguments, a function F and a list L, and returns a list

obtained by applying F to each element of L. The nth-3 function takes two arguments, an

integer N and a list L, and returns the N th element of L. If N < 1, it returns the first element

of L. If N > length(L), it returns the last element of L. Recursion is enabled via a recursive

function-set element. The fitness function explicitly penalises two types of run-time errors.

The first is caused by non-terminating recursion, and the second is caused by taking the car

or cdr of an empty list. A scalar value, which is either constant or a function of the length

of the argument list, is subtracted from the overall fitness of an individual in case of run-time

errors. The number of recursive calls is limited by the length of the argument list. If the limit

is reached, evaluation is abandoned and the run-rime error is flagged.

Koza et al. (1999) [21] (Chapter 8, page 147) introduced Automatically Defined Re-

cursion (ADR). There are four components to ADR, namely, recursion condition (RCB),

recursion body (RBB), recursion update (RUB), and recursion ground branch (RGB). To

prevent infinite recursion a limit is placed on the number of the recursive calls that are al-

lowed within an individual. When the limit is reached the fitness of the individual is heavily

penalised. The RBB branch normally contains a recursive call to ADR, and when the eval-

uation of RBB finishes, the evaluation is transferred to the RUB branch. The RCB branch

determines if recursion is continued by returning a positive value. In the case of returning a

negative value recursion is halted and the RGB branch gets evaluated.

Kochenderfer (2003) [18] worked on a block-stacking problem, and demonstrated how

GP may be used to evolve hierarchical/modular recursive programs. A recursive function-

set element is used to enable recursion. An individual is allowed a maximum number of

recursive calls that varied with the number of blocks in the problem. If the limit is reached,

evaluation is abandoned.

Spector, Klein, and Keijzer (2005) [36] introduced Push3 as a language for evolv-

ing programs with complex control structures. The problems of list reversal, Factorial, Fi-

bonacci sequence, Even-n-parity, and list sorting were tackled in this study. The most sig-

nificant change in the Push3 version of the Push language is the introduction of the EXEC

stack, which stores expressions, instructions, and literals for the Push interpreter to subse-

quently execute. Recursion is implemented using the combinator instruction EXEC.Y. Com-

plex computational processes can be built-up from simple expressions on the EXEC stack.
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EXEC.Y inspects the top of the EXEC stack, A, and then inserts the list (EXEC.Y A) as

the second item on the EXEC stack. This results in an endless recursive call to the unnamed

non-recursive function A. Recursion may be terminated through further manipulation of the

EXEC stack using a control manipulation instruction (i.e. a conditional) within A. The pos-

sibility of unbounded recursive calls is counteracted by imposing execution-step limits (set

between 150 and 1,000 for the experiments in [36]). When a program exceeds the execution-

step limit a fitness penalty may be imposed. Depending on the problem tackled, a different

level of penalty severity is adopted.

Wong (2005) [42] used an adaptive grammar-based genetic programming system (GBGP)

to evolve recursive solutions for the problems of Even-n-parity and greater-all. The greater-

all function accepts two arguments, a number and a list, and returns true if the number is

greater than any other number in the list, and false otherwise. An extended logic grammar

differs from a context-free grammar in that the grammar symbols, whether terminal or non-

terminal, may include arguments. Arguments can be used to enforce context-dependency.

Another difference is that an extended logic grammar allows a non-terminal at the right

hand-side of a grammar rule to be followed by an optional list of rule-biases, which is a

list of pairs. The first element of a pair is a number that identifies a grammar rule while the

second element of a pair is an integer between min-rule-bias and max-rule-bias. This integer

specifies the relative probability of applying the corresponding grammar rule to expand the

non-terminal symbol.

Recursion in GBGP is enabled via the use of a non-terminal symbol that allows the

evolved program to call itself. A recursion limit is enforced to avoid the problem of infinite

recursion. A program is terminated if after invoking it recursively 20 times it fails to return a

result. In that case, it gets assigned a special fitness value. Two techniques are implemented

in adaptive GBGP, which allow extended logic grammars to be modified dynamically when

offspring are created by crossover operation. The first one attempts to increase/decrease the

probability of generating good/poor programs. The second one tries to reduce the chance of

creating non-terminating programs. The grammar is automatically modified after observing

a number of non-terminating programs. It was found that adaptive GBGP reaches a higher

probability of success than a standard GBGP introduced earlier in [43]. Additionally, in the

case of adaptive GBGP, the modified grammars reduced the rule-biases of certain rules in

order to decrease the chance of generating non-terminating programs.

Agapitos and Lucas (2006) [2] proposed an Object-Oriented GP (OOGP) system to

evolve recursive programs for Factorial, Fibonacci, Exponentiation, Even-n-parity and Nth-3

(for problem description see [13]). Recursion is enabled via a recursive function-set element,

and a limit of 288 recursive calls is imposed during program evaluation. When evaluation

reaches the recursion limit, the program is assigned the worst possible fitness value. The pa-

per studied the efficiency of subtree crossover and subtree mutation operators in discovering

solutions, and concluded that a higher mutation probability is more successful in learning

recursive programs. This was mainly attributed to the fact that the majority of programs con-

taining a recursive node, which were sampled during early generations, are non-terminating

ones and consequently have very low fitness. This causes a premature elimination of recur-

sive structures in cases where search heavily relies on crossover operator. In addition, ran-

dom search was shown to be outperformed by evolution, however random search yielded

a probability of success of 6% for Factorial, 2% for Exponentiation, 1% for Even-n-parity,

and 2% for Nth-3. Fibonacci could not be solved using random search.

Agapitos and Lucas (2006) [1] further applied OOGP to evolve recursive sorting algo-

rithms of O(n × log(n)) time-complexity. Higher-order functions, offering implicit recur-

sion, were combined with explicit recursive calls. A upper bound was set to the permissible
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recursive calls (i.e. 10,500), after which evaluation is abandoned and individuals are as-

signed the worst possible fitness. Five measures of sequence disorder were studied as fitness

functions, with the one defined as the average distance that elements must travel in order to

reach their sorted position performing the best.

Agapitos and Lucas (2007) [4] continued work in evolving hierarchical/modular recur-

sive programs, and managed to evolve modular recursive sorting algorithms of O(n2) time-

complexity. The time-complexity of sorting was worse than that of the previous study by

Agapitos and Lucas in [1], however the main aim of the work in [4] was to demonstrate that

modular recursive programs can be successfully evolved. The modular architecture of the

sorting algorithms was based on ADFs, which were themselves allowed to be recursive. Five

fitness functions introduced in [1] were compared, with the mean sorted position distance

performing the best. Furthermore, performance differences between subtree crossover and

subtree mutation showed that mutation outperformed crossover. In addition, mutation was

shown to produce more parsimonious solutions that crossover. Random search was unable

to discover any solutions.

Agapitos and Lucas (2007) [3] evolved modular recursive programs for calculating the

mean, variance, and standard deviation of a list of real numbers, as well as the length of the

list of numbers. Each operator was represented using a separate ADF as part of a multi-ADF

program architecture. ADFs were allowed calls to themselves and to each other, and they

were cooperatively coevolved in the same run. The maximum allowed number of recursive

calls in each ADF was limited to the length of the input list. Non-halting programs were

assigned the worst possible fitness.

Wilson and Heywood (2007) [41] introduced Probabilistic Adaptive Mapping Develop-

mental Genetic Programming that co-operatively co-evolved a population of adaptive map-

pings and associated genotypes, which are used to learn recursive solutions of Factorial and

Fibonacci. The function set consisted of general machine-language instructions similar to

the earlier work of [15]. Recursion is enabled via conditional/unconditional branching in-

structions that cause the program counter to point to their target instruction. A program

terminates after running all its instructions or after the execution of 100 steps.

Shirakawa and Nagao (2010) introduced Graph Structured Program Evolution (GRAPE)

in [35]. Program representation in GRAPE consists of a directed graph of nodes and indexed

memory. Data flows through the directed graph and is processed at each node. There are two

types of node; one for processing and one for branching. Cyclic connections between nodes

can realise loops, whereas connections from any node to the start node can realise recursive

calls. The effectiveness of GRAPE to automatic programming tasks was shown through a

series of experiment to evolve programs for Factorial, Exponentiation and Sorting using

branching and loops.

Moraglio et al. (2012) [28] experimented with a method, which allows for the separate

evolution of recursive and base-cases in a recursive program. Evolution is set to synthesise

optimal non-recursive programs out of a special function primitive called a scaffolding func-

tion. A scaffolding function is a tree-node that returns the correct answer for all entries in

the training set for the problem. Once a scaffolding-based program passes all training cases,

all the occurrences of the scaffolding tree-node are replaced with a recursive tree-node (i.e.

a function that transfers control to the root of a tree), therefore converting the program into

a truly recursive one. As a side benefit, there is no need to take any measures against non-

halting individuals during evolution. Two problems are tackled; that of list reversal, and that

of inserting an element into an ordered list while maintaining the correct ordering. A search

regime based on a blend of crossover and mutation outperformed search regimes solely

based on crossover or mutation. Crossover alone was extremely inefficient in discovering



8 Alexandros Agapitos et al.

solutions in either of the recursive problems. This finding is inline with findings of Agapitos

and Lucas [2], which suggested the use of a higher mutation rate in relation to the crossover

rate for evolving recursive programs.

Alexander and Zacher (2014) [6] used call-trees to guide the evolution of recursive pro-

grams in an extended Grammatical Evolution system. A call-tree is used to describe the

function-call hierarchy in a program. Each node in the tree contains the parameters of the

function call. Each child-node represents the sub-calls made by its parent-node. The pro-

posed method separates evolution of recursive and base cases. The search process consists

of two phases. In the first phase, the user-provided call-tree is traversed to create a set of tu-

ples, where the first element of each tuple refers to the input parameter of a parent node, and

the second element refers to a list of child-node input parameters. Using this information,

the system constructs a grammar that accommodates the number of recursive calls depicted

in the call-tree, and then proceeds with the evolution of an expression that evaluates to the

recursive parameters required in each recursive call within the program. As an example, for

the problem of Factorial, this expression should be x-1, where x is the input variable. The

set of tuples generated from the call-tree are used as the training data for this step. In the

second phase, the previously evolved code is embedded in the grammar, and a new evolu-

tionary run is launched to synthesise the complete recursive function using a training set of

input-output pairs. A number of recursive problems were tackled, and it was found that the

proposed method significantly outperformed Grammatical Evolution both in terms of the

number of fitness evaluations and the number of times a 100% correct solution was evolved.

Turner and Miller (2014) introduced Recurrent Cartesian GP (RCGP) in [39]. The dis-

tinct characteristic of RCGP is the creation of cyclic graphs that enable it to store internal

state information. Its implementation allows connections between a given node and any

other node in the program including the program itself, thus allows recursive calls. De-

spite of the fact that the goal of the work in [39] was mainly to assess RCGP performance

improvements over standard Cartesian GP in tackling the partially observable tasks of Arti-

ficial Ant and Sunspot series forecasting, here we make a note of its potential capability of

evolving general recursive programs.

2 Scope of research

Research has shown that recursive programs with explicit recursive calls can be reliably

evolved from small samples of training examples, and that these programs generalise per-

fectly. With the notable exception of the works of [6,28], the complete structure of the

recursive program (i.e. both recursive and base cases) is searched for in an evolutionary

run. In order to handle infinite recursion, the vast majority of previous work placed a hard

threshold on the number of allowed recursive calls. This was either set equal to the length of

the input argument or to some arbitrary number decided by the experimenter. Abandoning

the evaluation of a recursive individual is followed by either assigning it the worst possible

fitness, or in some cases, allowing for a more fine-grained evaluation based on the progress

of the evolved solution up to that point.

Several papers surveyed in the previous section reported on the probability of success

and computational effort required to construct recursive solutions. However, most of the

arguments raised about the properties of the space of recursive programs are currently qual-

itative. Here we bridge this gap and present an in-depth analysis of tree-based GP for the

evolution of recursive programs. We first use a series of techniques to analyse the fitness
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landscape, and then present simulation results from evolving solutions to a range of recur-

sive problems. The research questions that we address are summarised bellow:

1. How does the functionality of recursive programs changes with respect to their size?

What is the distribution of non-halting programs?

2. Do recursive programs exhibit a weak or strong causality? How is the fitness landscape

structured in the neighbourhood of optimal individuals?

3. What is the effect of different variation operator schemes in searching the space of re-

cursive programs? What is the role of diversity in the process, and how are the levels of

diversity affected by different variation operators?

The rest of the article is structured as follows. Section 3 starts by introducing the re-

cursive problems. It then presents the fitness landscape analysis techniques, the GP system

setup, and the variation operators employed. Section 4 analyses the results, while Section 5

presents guidelines for using recursion in GP, and discusses open issues for further investi-

gation. Section 6 concludes the article.

3 Methods and Experiment design

3.1 Problems

Five different recursive problems are tackled. They are defined as follows:

Factorial

Factorial(i) =

{

1 if i < 1

i ∗ Factorial(i − 1) otherwise
(1)

Fibonacci

Fibonacci(i) =

{

1 if i = 0 or i = 1

Fibonacci(i − 1) + Fibonacci(i − 2) otherwise
(2)

Exponentiation

Exponentiation(base, exponent) =

{

1 if i < 1

base ∗ Exponentiation(base, exponent − 1) otherwise

(3)

Even-n-parity This problem takes as input a list l of N Boolean values, returning true if

an even number of inputs are true, otherwise it returns false.

Parity(l) =

{

true if l is empty

(car(l)||parity(cdr(l)))&&(!(car(l)&&parity(cdr(l)))) otherwise
(4)

where car returns the first element of a list and cdr returns the tail of a list.

Nth This problem takes as input two arguments, an integer n and a list l of doubles, and

returns the nth element of the list. If n is less than one, it returns the first element of the

list. If n is greater than the length of the list, it returns the last element of the list.

Nth(n, l) =







car(l) if n <= 1

Nth(n − 1, l) if n > size(l)

Nth(n − 1, cdr(l)) otherwise
(5)

where car returns the first element of a list and cdr returns the tail of a list.
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Table 1 Strongly-typed language for evolving recursive programs.

FUNCTION SET

Argument(s) type Return type

Arithmetic

add double, double double

sub double, double double

mul double, double double

div (protected) double, double double

Boolean logic

and, or, nand, nor Boolean, Boolean Boolean

List processing

car list<double> double

car list<Boolean> Boolean

cdr list<double> list<double>

cdr list<Boolean> list<Boolean>

isEmpty list<double> Boolean

isEmpty list<Boolean> Boolean

length list<double> double

length list<Boolean> double

Recursive nodes

Factorial double double

Fibonacci double double

Exponentiation double, double double

Even-n-parity list<Boolean> Boolean

Nth list<double>, double double

Predicates

>, ≥, =, <, ≤ double, double Boolean

Conditional

IF-Then-Else Boolean, double, double double

IF-Then-Else Boolean, Boolean, Boolean Boolean

TERMINAL SET

Value Type

Constants {−10.0,−9.0,−8.0, . . . , 8.0, 9.0, 10.0} double

Parameters training/test input value

double

list<double>

list<Boolean>

3.2 Language for constructing recursive programs

We defined a general-purpose, strongly-typed primitive language for constructing and evolv-

ing recursive programs, presented in Table 1. Recursion is implemented using explicit recur-

sive calls realised by tree-nodes that transfer the flow of control to the root of the expression-

tree. Base cases for terminating recursion can be synthesised using the If-Then-Else

primitive.

The function sets for different problems are illustrated in Table 2. The terminal sets con-

sist of constants in Table 1, as well as input parameters according to the problem. In the prob-

lem of Even-n-parity the primitive car returns a value of type Boolean. In the same prob-

lem, the primitive IF-Then-Else accepts 3 arguments of type Boolean, Boolean,

Boolean, and returns a value of type Boolean. In the problem of Nth, car returns a

value of type double. In this case, the primitive IF-Then-Else accepts 3 arguments of

type Boolean, double, double, and returns a value of type double.

3.3 Distribution of program functionality

This part of fitness landscape analysis investigates how the functionality of programs changes

with respect to their size for a given problem. In addition, we study how the proportion
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Table 2 Function sets for different problems.

Problem Input type(s) Return type Function set elements

Factorial double double arithmetic, predicates, conditional, recursive node

Fibonacci double double arithmetic, predicates, conditional, recursive node

Exponentiation double, double double arithmetic, predicates, conditional, recursive node

Even-n-parity list<Boolean> Boolean Boolean logic, predicates, list processing, conditional,

recursive node

Nth list<double>, double double arithmetic, list processing, predicates, conditional,

recursive node

of halting programs is distributed with increasing program size. We used the ramped uni-

form initialisation method presented in [22] to sample the program space (C++ code can be

found at ftp://ftp.cs.ucl.ac.uk/genetic/gp-code/rand_tree.cc). We

then plotted the proportion of programs of a given size (measured in terms of number of

tree-nodes) by their error (i.e. value of loss function), in order to study the distribution of

functionality and the distribution of non-halting programs for a given recursive problem.

For each program size in the interval of {5, . . . , 60}, we sampled and evaluated 2,000,000

programs. Each program is assigned to an error-class, and proportions are calculated as the

ratio of the number of programs belonging to a particular class over the total number of

programs sampled. In the case of Even-n-parity which uses a discrete loss function, the de-

termination of fitness classes is straightforward; we assign each error-class to every possible

value of the loss function. For the rest of the problems that use continuous loss functions,

discretisation needs to be performed in order to assign a program to an error-class. In our ex-

periments, continuous loss functions are normalised within the {0.0, . . . , 1.0} interval. This

interval is further divided into 100 discrete error-classes using a step of size 0.01. Program

error is rounded to the closest discrete error-class.

3.4 Random walks and Error-Distance correlation analysis

Random walks are employed to study the type of causality in recursive program representa-

tions, and to investigate how the fitness landscape is structured around optimal individuals.

For each evolved solution considered, 1, 000 random walks of length 20 are performed using

the standard subtree mutation operator (Section 3.5.4). In every problem we used a range of

successfully-evolved programs with various size and depth levels.

Random walks are instrumented in order to:

1. Plot the error (i.e. value of loss function) versus the edit-distance from the optimum

program.

2. Calculate the Pearson correlation coefficient between error and edit-distance.

3. Measure the proportion of single-step walks (i.e. a neighbour reached by a single muta-

tion on a perfect program) that result in a non-halting program.

4. Measure the average walk-length after which a perfect individual becomes a non-halting

program and their edit-distance at that point.

The version of the edit-distance that we used is defined in [14] as follows. Two trees are

brought to the same structure by adding null nodes to each tree. A constant is set to weight

the depth of tree differences differently. The distance between two nodes p and q is given

by:
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d(p, q) =

{

1 if they are equal nodes

0 otherwise
(6)

The distance between two trees T1 and T2 is given by:

dist(T1, T2) =







d(p, q) if T1 and T2 are leaves

d(p, q) +K ∗
m
∑

i=1

dist(si, ti) otherwise
(7)

where T1, T2 are trees with roots p and q and possible m subtrees s, t. The constant K is set

to 0.5 as in [14].

3.5 Evolving recursive programs

The final part of our analysis compares a range of variation operators in terms of their effi-

ciency at discovering solutions. For each problem and each variation operator, we performed

100 independent evolutionary runs, and reported the probability of success. We also studied

the evolution of phenotypic diversity maintained by different variation operators. Diversity

is measured in terms of fitness entropy [9,34].

3.5.1 Training and Test Data

The problem of learning recursive programs is formulated as the general function estimation

problem: we are given a set of training examples {(xi, yi)}
N
i=1, where y ∈ R is the response

variable and x ∈ R
d is a vector of explanatory variables. The goal is to find a function F ∗(x)

that maps x to y, such that over the joint distribution P (x, y) the expected value of a loss

function L(y,F (x)) is minimised:

F ∗(x) = argmin
F (x)

Ex,y[L(y,F (x))] (8)

In the case of recursive computer programs, the expected value of the loss function is

0.0 for an optimal individual, which is a program that successfully reproduces the exact

response variable values in a test set. A set of training examples is used to guide the evolu-

tionary search, and evolution is terminated if a maximum number of generations is reached

or an individual achieves the loss function value of 0.0 in the training set. Generalisation is

measured on an independent set of test cases, and recognises the success of a run. Table 3

presents the training and test datasets.

3.5.2 Loss Functions

For Factorial, Fibonacci and Exponentiation problems, the loss function takes the form

of normalised mean absolute error known as Canberra distance. The normalisation gives

equal weight to the errors resulting from each training case by placing each error in the

{0.0, . . . , 1.0} interval. This restricts larger errors from dominating the mean error, which is

important for problems such as Factorial. The loss function is defined as follows:
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Table 3 Training and Test data for different problems.

Problem Training Data Test Data

Factorial 10 examples, input x ∈ {1, . . . , 10} 10 examples, input x ∈ {11, . . . , 20}

Fibonacci 12 examples, input x ∈ {1, . . . , 12} 10 examples, input x ∈ {13, . . . , 22}

Exponentiation 10 examples of 2n , n ∈ {0, . . . , 9}
10 random examples of mn

m,n ∈ {0, . . . , 10}

Even-n-parity 12 examples of Even-2-parity 128 examples of Even-7-parity

Nth

20 examples 30 examples

list of unique elements {xi}
20

i=1
, x ∈ [1.0, 100.0] list of unique elements {xi}

30

i=1

20 values of input n ∈ {−4, . . . , 15} 30 values of input n ∈ {−4, . . . , 25}

L(y,F (x)) =
|y − F (x)|

|y|+ |F (x)|
(9)

where | · | returns the absolute value, y is the target response variable, and F (x) is the output

of an evolved program F given input vector x. For Factorial and Fibonacci, the input vector

is of a single dimension, whereas for Exponentiation the input vector is two-dimensional.

We used a zero-one loss function for the Even-n-parity problem, where all misclassifi-

cations are charged one unit. That is:

L(y,F (x)) = I(y 6= F (x)) (10)

where I(·) is the indicator function, y is the target response variable, and F (x) is the output

of an evolved program F given input vector x. The input vector in this case is a list of

Boolean variables, and the response variable is a Boolean variable.

For the Nth problem, the loss function is defined as follows:

L(y, F (x)) = 1−
1

2d(y,F (x))
(11)

where d(y,F (x)) is the distance (within the list) between the correct position of element

y and the position of the program return-value F (x) given input vector x. The loss function’s

output is constrained within the {0.0, . . . , 1.0} interval. In cases where F (x) does not match

an element of the input list then the maximum distance of 1.0 is returned.

The average value of a loss function on N training examples is simply:

1

N

N
∑

i=1

L(yi, F (xi)) (12)
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3.5.3 Handling infinite recursion

To avoid the problem caused by non-terminating recursive programs we imposed a limit on

the allowed number of intermediate recursive calls. This limit was set to 10,000 recursive

calls. When a program reaches the recursion limit we assume that the program is a non-

halting one, evaluation is abandoned and the individual is assigned the worst possible fitness

according to the problem. For Factorial, Fibonacci, Exponentiation, and Nth, a non-halting

individual is assigned the fitness value of 1.0. For the problem of Even-n-parity a non-halting

individual is assigned the fitness value of 12.

3.5.4 Variation operators and run parameters

We contrasted the search performance of 4 different variation operator schemes, and also

that of random search. These are described bellow.

Subtree recombination + Subtree mutation (SR+SM). This is the traditional search regime

introduced in [19], which relies heavily on recombination using standard subtree crossover.

While the work of [19] did not use any mutation, we deliberately employ subtree muta-

tion, which is applied with a very low probability as opposed to crossover. The parame-

terisation of the operators is given in Table 4.

Subtree mutation (SM). This is a search regime that relies solely on mutation, and makes

no use of recombination. Under type and depth constraints a node is selected with uni-

form probability and the subtree rooted at that node is replaced by a newly generated

subtree of the same type. The tree-generation procedure is grow or full [19]. To improve

on the exploratory capability of the mutation operator, other than picking the tree-node

to be replaced from the whole expression-tree, we devised an additional node-selection

method. In this method a depth-level is picked uniform-randomly from the range of all

possible depth-levels present in the expression-tree, and subsequently a node is picked

uniform-randomly from the set of nodes that lie in the chosen depth-level. The decision

between the two node-selection methods is governed by a probability set in favour of

the uniform-random selection from the whole expression-tree.

Multi-mutation (MM). This operator is introduced in [12], and is designed to counteract

the undesirable tendency of traditional subtree crossover and mutation operators to af-

fect smaller and smaller fractions of the expression-tree as the tree grows larger. Multi-

mutation enables the transition from one location to any other location of the search

space in a sequence of finite steps. It is a composite operator formed using a set of 6

distinct mutation types: one-node, all-nodes, swap, grow, trunc, gaussian; their descrip-

tion can be found in [12]. This operator proceeds as follows: First a sample n from

a Poisson random variable with certain mean λ is drawn. Then, n mutation types are

uniform-randomly picked with replacement from the set. Each of these mutation op-

erators is applied in sequence, in a pipe-and-filter manner in order to generate a new

individual. As an example, given parent p, n = 2, and a sequence of mutation types

(oneNode, grow) then offspring o = grow(oneNode(p)).
Uniform recombination + Point mutation (UR+PM). Uniform crossover works in direct

analogy to the operator defined for GAs, and it was introduced in GP in the work of [31].

Its application starts by jointly traversing the two trees in a top-down fashion in order to

define a common region, which contains any node in one parent having a corresponding

node at the same location in the other parent. Offspring are created by visiting nodes in

the common region and flipping a coin at each locus to decide whether the correspond-

ing offspring node should be picked from the first or the second parent. If the node to
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Table 4 Parameterisation of variation operators.

Scheme 1: Subtree recombination + Subtree mutation

Subtree crossover

prob. of selecting a function 90%

probability of selecting a terminal 10%

probability of applying the operator 90%

Subtree mutation

probability of selecting a node from a depth-level 30%

probability of selecting a node from the whole tree 70%

depth of subtree (subject to max. depth) uniform-randomly within {1, . . . , 5}
tree-generation method 50% grow, 50% full

probability of applying the operator 10%

Scheme 2: Subtree mutation

probability of selecting a node from a depth-level 30%

probability of selecting a node from the whole tree 70%

depth of subtree (subject to max. depth) uniform-randomly within {1, . . . , 5}
tree-generation method 50% grow, 50% full

probability of applying the operator 100%

Scheme 3: Multi-mutation

Mutation types AllNodes, OneNode, Swap, Grow, Trunc

Poisson λ 1.2

probability of applying the operator 100%

Grow

probability of selecting a node from a depth-level 30%

probability of selecting a node from the whole tree 70%

depth of subtree (subject to max. depth) uniform-randomly within {1, . . . , 5}
tree-generation method 50% grow, 50% full

Scheme 4: Uniform recombination + Point mutation

probability of applying the operator 100%

Point mutation probability of mutating a node 2 / treeSize

be inherited belongs to the boundary of the common region and it is a function, then the

subtree that is rooted there is transferred to the offspring. Point-mutation always follows

the application of uniform crossover, with the probability that a tree-node will be mu-

tated set to 2/treesize. In point-mutation, a tree-node is substituted by another random

tree-node of the same type and arity. One of the properties of uniform crossover is that

it does not increase the depth of the offspring beyond that of their parents, and therefore

beyond the maximum depth of the expression-trees created at the start of evolution.

Random search. The last search regime used is random search (i.e. no selection pressure).

This resulted in generations of purely random individuals created with the ramped-half-

and-half method with minimum and maximum depths set to 4 and 10 respectively.

The rest of the evolutionary run parameters are the following. We used an elitist, gener-

ational GP system with elitism set to 1 individual. Population size was set to 5,000 individ-

uals for the problems of Factorial, Even-n-parity, and Nth. The problems of Fibonacci and

Exponentiation used a population size of 10,000. The number of generations was set to 100.

Ramped-half-and-half [19] was used to initialise the population, with initial tree-depth rang-

ing from 2 to 5. For the runs of uniform crossover, ramped-half-and-half used tree-depths

in the range of 2 to 10. In all problems and variation operator setups, the maximum allowed

tree-depth produced during evolution was set to 10. Finally, we used tournament selection

with a tournament size of 4.
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(c) Factorial. Error interval: {0.81, . . . 0.99}

Fig. 1 Proportion of programs (out of 2,000,000 programs) of given error as a function of program size for

Factorial. To aid visualisation the distribution of error is presented in consecutive error-class intervals, namely

{0.0, . . . 0.6}, {0.61, . . . 0.8}, and {0.81, . . . 0.99}.

4 Results analysis

4.1 Distribution of program functionality

Figures 1, 2, and 3 present the distribution of error values as a function of program size,

for the problems of Factorial, Fibonacci, and Exponentiation respectively. To aid visual-

isation, we have divided the distribution and presented it in a number of complementary

figures using consecutive error-class intervals. As an example, the distribution of errors for

the problem of Factorial is presented in three intervals of {0.0, . . . 0.6}, {0.61, . . . 0.8}, and

{0.81, . . . 0.99} in figures 1(a), 1(b), and 1(c) respectively. In all three problems, the dis-

tribution concerns error values in the interval {0.0, . . . 0.99}. Error of 1.0 is indicative of a

non-halting program, and the proportion of non-halting programs as a function of program

size is illustrated independently in Figure 4 for all five problems.

Figures 1, 2, and 3 suggest that, provided that programs exceed some small expression-

tree size-threshold, the distribution of error is roughly independent of size. In all three prob-

lems, this size-threshold appears to be approximately 30 tree-nodes. In addition, we ob-

serve that the proportion of good or near-optimal programs is very small; random programs

scarcely cover low error-classes or not at all.
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(a) Fibonacci. Error interval: {0.0, . . . 0.2}

5
15

25
35

45
550.21

0.31
0.41

0.53

0

0.02

0.04

0.06

Error class

Program size

P
ro

po
rt

io
n

(b) Fibonacci. Error interval: {0.21, . . . 0.52}

5
15

25
35

45
550.53 0.63 0.73 0.83 0.93 0.99

0

0.002

0.004

0.006

0.008

0.01

0.012

Error class

Program size

P
ro

po
rt

io
n

(c) Fibonacci. Error interval: {0.53, . . . 0.99}

Fig. 2 Proportion of programs (out of 2,000,000 programs) of given error as a function of program size

for Fibonacci. To aid visualisation the distribution of error is presented in consecutive error-class intervals,

namely {0.0, . . . 0.2}, {0.21, . . . 0.52}, and {0.53, . . . 0.99}.

Figure 4 shows that in all problems the proportion of halting programs falls towards

small values with increasing program size. The problems of Factorial and Exponentiation

in figures 4(a) and 4(c) illustrate a rapid convergence of this proportion towards the value

of zero as a function of size. The problem of Fibonacci in Figure 4(b) shows convergence

of proportion of halting programs around 17%. The problems of Even-n-parity and Nth in

Figures 4(d) and 4(e) do not show a convergence of the proportion to a particular value, at

least for the program sizes studied here.

Overall, our findings are in accordance with simulation results published in [25], which

confirmed that in Turing-complete fitness landscapes the proportion of halting programs

falls towards zero with increasing program size. The present study concerns small programs

of maximum tree-size of 60 nodes. This part of recursive program spaces is populated with

a decreasing small fraction of usable programs. We expect that this finding will generalise

to larger tree-sizes as well. Specifically, we expect the number of halting programs to rise

exponentially with size, but to get increasingly rare as a fraction of all programs as in [25].
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(a) Exponentiation. Error interval: {0.0, . . . 0.3}
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Fig. 3 Proportion of programs (out of 2,000,000 programs) of given error as a function of program size for

Exponentiation. To aid visualisation the distribution of error is presented in consecutive error-class intervals,

namely {0.0, . . . 0.3}, and {0.31, . . . 0.99}.
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Fig. 4 Proportion of halting programs (out of 2,000,000 programs) as a function of program size.

4.2 Error-distance-correlation and random walk analysis

Figure 5 illustrates scatter plots of error versus edit-distance resulted from random walks

with evolved solutions of ascending size highlighted in grey in Table 5. Error refers to the

value of the loss function. Those points on the level of maximum error are indicative of

non-halting programs, whereas all other points represent halting programs. Table 5 reports

the Pearson correlation coefficient between edit-distance and error, as well as the results of

random walks using as starting point different successfully evolved individuals of various

size and depth levels.
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Looking at the Pearson correlation coefficient between edit-distance and error in Table 5,

we observe that there is a weak correlation for the problems of Factorial, Fibonacci, Expo-

nentiation, and Even-n-parity. The correlation is stronger in the case of Nth. The scatter plots

of Figure 5 show that in all problems very small edit-distances from an optimal program are

seen with a wide range of error values. In the extreme cases, small edit-distances are coupled

with the largest possible error that is indicative of a non-halting program. Specifically, an

average of approximately 1/3 of 1,000 single-step neighbours (column v of Table 5) will pro-

duce a non-halting program for the problems of Factorial, Fibonacci, Exponentiation, and

Even-n-parity. The evolved solutions for Nth appear to be more resilient under the applica-

tion of mutation; an average of less than 1/5 of 1,000 single-step neighbours are non-halting

programs.

Recursive program spaces may be difficult to search. Very small variations in the struc-

ture of a halting program (as measured by edit-distance) are able to significantly degrade

its semantics, and in the worst case result in a non-halting program. On the positive side,

non-halting programs are on average three to seven mutation steps away from optimal so-

lutions in all problems considered. The resulting edit-distances at that point similarly range

on average within the {3.0, . . . , 7.0} interval. The scatter plots in Figure 5 show that the

neighbourhoods (programs of small edit-distance from the optimum) of optimal programs

are composed of many halting programs of intermediate error. This suggests that the evo-

lution of recursive programs is a difficult but not a needle-in-a-haystack problem, and that

there exist a number of mutation-based transitions that enable hill-climbing in this program

space.

A final observation in Figure 5 concerns the neutrality of the program space. In all

problems there exist a number of neutral mutations where a positive edit-distance is seen

with an error of zero. There is a weak trend towards higher neutrality in bigger tree-sizes for

the problems of Even-n-parity and Nth.

4.3 Evolutionary runs analysis

Figure 7 presents the evolution of best-of-generation error (interpreted as “learning curves”),

while Figure 8 presents the evolution of error entropy for all problems using different varia-

tion operator setups. Table 6 summarises the probability of success, while Figure 6 illustrates

the cumulative probability of success.

A clarification concerning the learning curves needs to be made at this point before pro-

ceeding to the discussion of results. The problem of learning general recursive programs is

reduced to that of function estimation, in which a response variable needs to be predicted

with zero loss. All problem definitions but Even-n-Parity have real-valued response vari-

ables. The fact that function sets are composed of arithmetic operations allows evolutionary

search to sample non-recursive programs in an attempt to minimise the loss function over

the training observations. It is interesting to count the number of runs that resulted in re-

cursive programs as opposed to runs that resulted in programs of constant time-complexity,

nonetheless this is left as future exercise.

The tendency of the learning curves of certain problems to yield low error levels does

not necessarily reflect the probability of finding a solution. For example, in the following

sections we shall observe that the evolutionary runs of Fibonacci and Exponentiation at-

tain lower error levels that the evolutionary runs on Factorial. This is mainly attributed to

the large differences in the scale of the response variable values that need to be predicted

in each problem. In particular, Factorial runs learn the sequence {1, 2, 6, . . . , 3,628,800},
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Table 5 Summary of random walk analysis. Statistics are calculated on 1,000 random walks of length of

20 steps starting from successfully-evolved programs of various shapes (different size and depth levels).

Standard error of the mean in parentheses. Single-step random walks in column v refer to neighbours reached

by a single application of subtree mutation to a perfectly-evolved program. Columns v, vi, vii report mean

values of their constituent elements in bold font. The programs used as optima in the scatter plots of Figure 5

are highlighted in grey.

Evolved Size Depth EDC Proportion of Mean random Mean edit-distance

solution (# nodes) Pearson single-step random walk length of non-halting

coefficient walks that result that results in programs

in non-halting non-halting from solution

program program

(i) (ii) (iii) (iv) (v) (vi) (vii)

F
a
ct

o
ri

a
l

15 5 0.302 0.34 3.11 (0.07) 2.85 (0.05)

17 4 0.280 0.34 3.33 (0.08) 2.86 (0.04)

23 6 0.504 0.23 4.34 (0.09) 3.80 (0.06)

47 7 0.448 0.22 4.18 (0.08) 4.63 (0.07)

72 10 0.542 0.11 6.92 (0.12) 6.60 (0.11)

64 10 0.261 0.37 2.61 (0.05) 2.77 (0.07)

83 10 0.501 0.14 6.20 (0.11) 5.99 (0.12)

108 10 0.434 0.20 4.29 (0.08) 5.00 (0.11)

143 10 0.348 0.22 4.10 (0.08) 4.05 (0.11)

183 10 0.293 0.32 2.76 (0.05) 3.23 (0.10)

mean: 0.25 mean: 4.18 mean: 4.28

F
ib

o
n

a
cc

i

31 6 0.416 0.44 2.33 (0.05) 3.21 (0.09)

70 7 0.511 0.36 2.78 (0.06) 5.38 (0.14)

246 8 0.582 0.34 3.04 (0.07) 6.65 (0.17)

mean: 0.38 mean: 3.05 mean: 5.08

E
x
p

o
n

en
ti

a
te 21 5 0.424 0.34 3.11 (0.07) 3.20 (0.05)

31 6 0.432 0.27 3.43 (0.07) 4.37 (0.10)

67 8 0.439 0.22 4.21 (0.08) 5.07 (0.10)

73 10 0.342 0.35 2.91 (0.06) 3.40 (0.06)

mean: 0.29 mean: 3.41 mean: 4.01

E
v
en

-n
-p

a
ri

ty

29 7 0.347 0.26 3.66 (0.08) 3.00 (0.05)

45 10 0.421 0.24 3.74 (0.07) 2.88 (0.05)

59 8 0.278 0.3 3.23 (0.07) 2.85 (0.05)

63 9 0.361 0.33 2.87 (0.06) 3.73 (0.06)

81 9 0.347 0.26 3.59 (0.07) 3.15 (0.06)

94 10 0.467 0.30 3.03 (0.06) 2.22 (0.04)

112 10 0.346 0.20 4.26 (0.08) 2.53 (0.05)

248 10 0.512 0.20 4.22 (0.08) 4.02 (0.08)

296 10 0.336 0.33 2.87 (0.06) 3.73 (0.06)

447 10 0.526 0.25 3.61 (0.07) 3.66 (0.08)

mean: 0.27 mean: 3.5 mean: 3.20

N
th

19 4 0.699 0.13 7.72 (0.14) 5.72 (0.06)

27 5 0.579 0.28 4.82 (0.11) 4.37 (0.09)

38 10 0.554 0.15 6.28 (0.12) 4.49 (0.12)

44 8 0.604 0.14 7.23 (0.13) 5.79 (0.11)

46 7 0.614 0.13 7.37 (0.13) 6.35 (0.11)

57 7 0.626 0.14 7.04 (0.13) 6.88 (0.12)

74 7 0.574 0.17 6.30 (0.13) 6.34 (0.12)

111 7 0.608 0.13 7.22 (0.13) 6.81 (0.11)

138 10 0.670 0.07 10.09 (0.15) 10.59 (0.16)

222 10 0.602 0.06 10.48 (0.15) 9.91 (0.15)

mean: 0.14 mean: 7.45 mean: 6.72

Table 6 Summary for probability of success (out of 100 independent runs) using different variation operator

schemes. Standard errors in parentheses. Best performance highlighted in grey.

SR+SM SM MM UR+PM Random Search

Factorial 28% (0.04) 52% (0.04) 59% (0.04) 4% (0.01) 10% (0.03)

Fibonacci 1% (0.009) 1% (0.009) 3% (0.01) 0% (-) 0% (-)

Exponentiation 1% (0.009) 4% (0.01) 5% (0.02) 3% (0.01) 2% (0.01)

Even-n-parity 10% (0.03) 9% (0.02) 21% (0.04) 0% (-) 1% (0.009)

Nth 27% (0.04) 15% (0.03) 42% (0.04) 1% (0.009) 2% (0.01)
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whereas Fibonacci runs learn the sequence {1, 2, 4, . . . , 512}, and Exponentiation runs learn

the sequence {1, 2, 3, . . . , 233}.

We also found that SR+SM attained lower error levels than those variation operator

setups with heavy reliance on mutation, i.e., SM and MM. This is indicative of the local-

search nature of standard subtree crossover as documented in the early work of [31].

4.3.1 Factorial results

For the problem of Factorial, evolution was able to discover solutions using all different

variation operator setups. Random search was also successful 10% of the times. MM yields

59% probability of success and outperforms all other search schemes (Table 6). SM is also

very successful, attaining a 52% probability of success.

The learning curves of Figure 7(a), Figure 7(b), Figure 7(c), Figure 7(d) show that in

all operator setups, except the UR+PM, evolutionary progress seems to stagnate at around

generation 80. For UR+PM stagnation is realised around generation 30. SR+SM seems to

learn quicker than MM and SM, and ultimately converges to lower error levels. We also

observe that in all three SR+SM, SM, and MM most of the solutions are discovered prior to

generation 20.

Figure 6(a) shows that the probability of success increases up to generation 70 for the

mutation-based search regimes of SM and MM. The probability of success of recombination-

based regimes SC+SM, UR+PM increases only up to generation 40. We attribute this dif-

ference to the quicker convergence that is observed in the learning curves of recombination-

based regimes in Figure 7(c) and Figure 7(d).

The evolution of error entropy in Figure 8(a), Figure 8(b), Figure 8(c), Figure 8(d) show

that on average the phenotypic diversity increases as a function of time for the mutation-

based cases of SM and MM. For the recombination-based search regimes phenotypic diver-

sity is either constant for UR+PM, or decreasing for SR+SM as a function of time.

4.3.2 Fibonacci results

The problem of Fibonacci turned out to be difficult for GP. UR+PM was unable to discover

any solutions; random search was similarly unsuccessful. MM was the best performing,

discovering a solution in 3 out of 100 runs. Learning curves in Figure 7(e) and Figure 7(h)

suggest that evolution stagnates at around generation 80 and 60 for the cases of SR+SM and

UR+PM respectively. No particular stagnation is demonstrated in the case of MM. Similarly

to the problem of Factorial, SR+SM learns faster and ultimately converges to lower error

levels as opposed to other search regimes.

Figure 6(b) shows that in all search schemes, the probability of success increases up to

generation 58, after which no new solutions are ever discovered. On average, the evolution of

phenotypic diversity in Figure 8(g) shows that diversity is an increasing function of time for

the case of MM. After generation 20, the diversity in SM and UR+PM seem to be constant

on average as a function of time in Figure 8(f) and Figure 8(h) respectively. The decrease

in phenotypic diversity is rapid (after approx. generation 15) for the case of SR+SM. This

is indicative of a local search not ideal to explore the search space of recursive programs

effectively.
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4.3.3 Exponentiation results

Similarly to Fibonacci, this is also a difficult problem for GP to solve. We suggest that this

difficulty partly stems from the fact that both problems of Fibonacci and Exponentiation

have two parameters that need to be combined in the evolved solution as opposed to the

problem of Factorial with a single input parameter. All variation operator schemes were

able to discover solutions; MM performed the best with a probability of success of 5%,

while random search was successful in 2% of runs.

Learning curves in Figure 7 show no substantial convergence of error but for the case of

UR+PM. Similarly to previous problems, SR+SM learns faster and converges to lower error.

The error entropy histogram in Figure 8(k) shows that phenotypic diversity is an increasing

function of time for the case of MM. In all search operator schemes, diversity appears to

remain constant throughout the evolutionary runs after a time-dependent threshold.

4.3.4 Even-n-parity results

MM outperformed all other operator setups, and attained a probability of success of 21%.

UR+PM was unable to discover solutions for this problem. The learning curves for Even-n-

parity in Figure 7 show no particular convergence for the mutation-based operators. SR+SM

seems to converge after generation 60, while UR+PM performs badly by getting stuck in

local optima at the very early stages of evolution (after approx. generation 8). In addition,

SR+SM learns faster and converges to lower error levels than the cases of mutation.

Figure 6(d) shows benefit from continuing the evolutionary runs past generation 75 for

the case of MM; runs for SR+SM and SM found no additional solutions past that point.

Error entropy curves in Figure 8 show that diversity is an increasing function of time for the

case of MM; for all other search regimes diversity appears to decrease throughout the runs.

4.3.5 Nth results

In the problem of Nth, MM outperforms all other operators in terms of probability of suc-

cess; random search discovered solutions in 2% of the runs. The learning curves in Figure 7

show that runs of MM and SR+SM converge on average around generation 80, while the

runs of SM and UR+PM converge much faster.

Figure 6(e) shows that runs of MM benefit from an extended search past generation

62, while the rest of the operators are unable to discover any additional solutions past that

point. Runs of SR+SM and SM appear to lose phenotypic diversity throughout the run in

Figure 8(q) and in Figure 8(r) respectively. Phenotypic diversity appears to be an increasing

function of time for the case of MM, and constant after a small time-dependent threshold

for the case of UR+PM.

5 Lessons from the empirical analysis

The evolution of general recursive programs by means of GP is not a trivial exercise. This

section considers different ways in which we can use the lessons learned from the empirical

analysis to better search recursive program spaces. At the same time, we identify promising

areas of future research.
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5.1 Finess function

Our simulations suggested that given the current fitness function and subtree mutation, re-

cursive programs are objects exhibiting the property of weak causality. The vast majority

of fitness functions currently used in recursive GP heavily penalise non-halting programs.

We believe that this may introduce a level of deception given that very small changes in the

structure of a halting program can result in a non-halting program and therefore in a very

bad individual. A non-halting program is not necessarily a bad program; it is possible that

it contains useful parts that could be exploited throughout the course of evolution. Ideally,

the fitness function needs to incrementally encourage the synthesis of a recursive solution

by rewarding partially-correct recursive programs.

One possibility is to use a multi-objective fitness function that evaluates the semantics

of a recursive program. Specific tests may be devised to check for the presence of recursive

and base cases in an individual. As an example, in the case of Factorial a test may evaluate

whether successive recursive calls are invoked on a decrementing argument. Notably, such a

fitness function, similarly to the ones used in [6,28] requires knowledge of the solution and

lacks generality.

The fitness function we employed in this work is general and requires no knowledge

about the evolved solution. Undoubtedly, this generality comes at the price of having to

assign a pre-determined penalty to a non-halting program. In addition, a bias is exerted by

the hard limit on the allowed number of recursive calls. We attempted to reduce this bias as

much as possible by setting the number of allowed calls to 10,000.

Furthermore, we recommend that the fitness function we used be combined with low

selection pressure. This will allow for more exploration and somewhat counteract the ten-

dency of the search to move away from non-halting programs solely on the ground that those

programs exceeded the allowed recursive calls.

An alternative implementation of the current fitness function may use a less severe

penalty for a non-halting program. Methods for credit/blame assignment [38] is a poten-

tial area for further research.

5.2 Variation operator

For evolutionary systems with heavy reliance on recombination, it is of great importance

that the population of programs remains diverse. It turns out that fitness diversity can be

maintained in standard symbolic regression applications of GP without the use of muta-

tion. Nonetheless, if recursive nodes are prematurely lost from the population, evolutionary

search will struggle in recursive program spaces. As it currently stands, non-halting pro-

grams are heavily penalised. Initial random programs containing recursive nodes are poorly

structured, and are most likely non-terminating ones. It is difficult for these recursive pro-

grams to survive the selection process, and these get quickly eliminated from the population.

Given the low probability of subtree mutation in SR+SM, the search concentrates around

non-recursive programs. Search at that point becomes local and biased [31], as demonstrated

in the fast convergence of learning curves to low error levels in Figure 7.

The very poor performance of UR+PM can be similarly attributed to premature elimi-

nation of recursive nodes from individuals in the population. However, in the total absence

of subtree mutation this effect is even more pronounced, thus the operator was unable to

discover any solutions for the problems of Fibonacci and Even-n-parity. We noticed that

the type and arity constraints of primitive elements in all problems make it impossible for
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a non-recursive node to be mutated back to a recursive node using point-mutation. In the

absence of subtree mutation, once programs containing recursive nodes wither away from

the population, it is impossible to be introduced again. The search quickly converges to parts

of the space with non-recursive programs, and gets stuck there indefinitely.

The interplay between the fitness function and the variation operator is crucial. Our sim-

ulations suggest that searching the space of recursive programs can be most effectively re-

alised using a search operator scheme that relies heavily on mutation given our fitness func-

tion. Multi-mutation is able to increase the fitness diversity in the population. This turned out

to be positively correlated with the likelihood of discovering solutions to recursive problems.

5.3 Handling the halting problem

To avoid the problem caused by non-terminating recursive programs we imposed a limit

on the allowed number of intermediate recursive calls. By limiting the number of recursive

calls in this way, we are providing a weak form of bias by constraining the range of different

recursive behaviours that are considered during search. On the positive side, handling infinite

recursion via a hard limit on recursive calls is straightforward to implement and to configure.

In addition, it allows one to set a reasonable limit on the run-time of an experiment.

Is is possible to adapt this limit using a self-adaptive evolutionary computation [7]. In a

self-adaptive evolutionary computation, adaptation of parameters can take place both on the

population-level and on the individual-level. The limit of allowed recursive calls is a scalar

that can be encoded along with an expression-tree of an individual, and then optimised.

Furthermore, the recursive calls limit can be set my means of competitive coevolution, in

which the difficulty of the training examples and therefore the respective computation budget

are incrementally adapted as programs become fitter. An example of competitive coevolution

between the difficulty of the task and the programs is reported for a reinforcement learning

problem in [16].

Two interesting alternatives for tackling the halting problem, which have not been at-

tempted in the context of evolving recursive programs, are the competing coroutines method

of Maxwell [26], and the anytime method of Teller [37]. In the competing subroutines

method, a population of programs is run concurrently, with best fitness being assigned to

the first programs to provide correct output. In the anytime method, an evolved program

is allowed access to a memory store, which can be manipulated through the use of special

read and write primitives. Upon fitness evaluation, each program is given a short amount

of time to run. Then the values of certain memory positions are extracted and interpreted as

its answer regardless of whether it had terminated or not.

6 Conclusion

We presented an empirical analysis of the fitness landscape of recursive programs, and we

subsequently evolved recursive solutions to a number of problems. Very importantly, the

form of explicit recursion that we studied is general and in-line with conventional program-

ming’s implementation of recursive calls. It does not require high-level recursive operators

to be supplied in the function set. At a minimum, the implementation requires a recursive

function-node to represent recursive cases and a conditional If-Then-Else primitive to

terminate recursion.
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Simulations suggest that the functionality in parts of the space containing short programs

converges to a limiting distribution after a small size-threshold. Overall, the proportion of

halting programs decreases as the size of programs increases. We are expecting this finding

to generalise in parts of the search space containing bigger-sized programs; this remains to

be confirmed in future research.

In addition, landscape analysis showed that recursive programs are objects exhibiting the

property of weak causality; small changes in the program structure may cause big changes

in semantics and fitness. Nonetheless, the problem of evolving recursive programs is by

no means a needle-in-a-haystack problem. There exist neighbours (in terms of small edit-

distance) in the reach of a standard mutation-based operator that may be transitioned to in

the course of hill-climbing towards an optimal program.

Given the fitness function employed, the multi-mutation operator is the most well-suited

to evolve recursive solutions. This operator enabled high levels of phenotypic diversity in

the population, and this correlated positively with the probability of discovering optimal

programs. Evolution was also shown to outperform random search.

Recursion is an ingenious approach to problem solving by means of a computer pro-

gram. Investigating scalable methods for evolving recursive programs expands the class of

problems that GP can solve. Our work has direct implications for the broader project of

general program synthesis by means of GP.
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Fig. 5 Scatter plots between edit-distance and error. Error refers to the value of the loss function. For each

problem we used evolved solutions of ascending expression-tree size highlighted in grey in Table 5.
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Fig. 6 Cumulative probability of success.
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Fig. 7 Evolution of best-of-generation error (minimum error) in 100 independent evolutionary runs using

different variation operators. Mean shown in bold.
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Fig. 8 Evolution of error entropy in 100 independent evolutionary runs using different variation operators.

Mean shown in bold.


