
 
 

  

Abstract— In this paper we propose a new approach for 
applying Genetic Programming to lossless data compression 
based on combining well-known lossless compression 
algorithms. The file to be compressed is divided into chunks of 
a predefined length, and GP is asked to find the best possible 
compression algorithm for each chunk in such a way to 
minimise the total length of the compressed file. This technique 
is referred to as “GP-zip”. The compression algorithms 
available to GP-zip (its function set) are: Arithmetic coding 
(AC), Lempel-Ziv-Welch (LZW), Unbounded Prediction by 
Partial Matching (PPMD), Run Length Encoding (RLE), and 
Boolean Minimization. In addition, two transformation 
techniques are available: Burrows-Wheeler Transformation 
(BWT) and Move to Front (MTF). In experimentation with this 
technique, we show that when the file to be compressed is 
composed of heterogeneous data fragments (as is the case, for 
example, in archive files), GP-zip is capable of achieving 
compression ratios that are superior to those obtained with 
well-known compression algorithms. 

I. INTRODUCTION 

One of the paradoxes of technology evolution is that 
despite the development of computers and the increasing 
need for storing information, there is a lack of development 
of compression techniques. As the evolution of computer 
systems progresses rapidly, the amount of stored information 
will increase at the same rate. Researchers in the 
compression field tend to develop algorithms that work with 
specific types of data, taking advantage of any available 
knowledge about the data. It is difficult to find a universal 
compression algorithm that performs well on any data type 
[1]. Two principles are commonly accepted in the field of 
data compression: a) there is no algorithm that is able to 
compress all the files even by 1 byte, and b) there are less 
than 1% of all files that can be compressed losslessly by 1 
byte [1] . 
  Consequently, the development of generic compression 
algorithms is attracting less attention. Nevertheless their 
importance should not be underestimated, as they are useful 
when the nature and regularities of a given data file is not 
predictable. For example, in archive systems, the users need 
to compress huge amounts of different data, such as text, 
music, pictures, video and so forth. A single universal 
compression model would be preferable in this case. 

We have mentioned that best compression can be 
achieved when applying a compression algorithm 
specialised for the type of data that need compressing. In this 
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paper we investigate the idea of evolving programs that 
attempt to identify what is the best way of applying different 
compression algorithms to different parts of a data file so as 
to best match the nature of such data.  

The structure of this paper is as follows. In Section II 
some related work is briefly reviewed. Section III discusses 
our system, GP-zip, in detail. This is followed by 
experimental results with GP-zip in Section IV. Section V 
proposes a further improvement to GP-zip which 
significantly improves compression ratios. Finally, 
conclusive marks are given in Section VI.  

II. RELATED WORK 
Data compression requires highly specialized procedures. 

Therefore, evolving a data compression algorithm is not an 
easy task. Few attempts have been made to use of 
evolutionary algorithms to evolve data compression models.  

There are two main approaches for the use of evolutionary 
computations in data compression. The first is the use of 
genetic algorithms to find parameters for a compression 
algorithm with the aim of maximising the compression ratio. 
The second approach is the use of genetic programming 
(GP) for what is called programmatic compression [3]. Of 
the two, the latter is much more powerful, at least in 
principle, as was demonstrated by Nordin and Banzhaf who 
used GP to achieve lossy compression for images and 
sounds [3]. Others have also used genetic programming in 
developing compression models. For example, [4] used 
genetic programming for string compression. Fukunaga and 
Stechert [5] developed a nonlinear predictive model to 
compress grey scale images. Parent and Nowe [2] used 
genetic programming to reduce the entropy of the data. They 
evolved transformation programs in order to maximize 
compression ratios when applying the transformed data to 
lossless compression algorithms.  

III. GP-ZIP 
Over the past decade many techniques have been 

developed for lossless compression, each of which has their 
own particular advantages and disadvantages. Each performs 
well on the data domain that they are designed to work in. 
Unfortunately, no single compression algorithm exists that is 
reliable for all known data types. Here we investigate how to 
evolve a program that matches different parts of a data file 
with the best possible compression model for them. Our 
approach works as follows. 

We divide the given data file into chunks of a certain 
length and ask GP to identify the best possible compression 
technique for each chunk. The function set of GP-zip is 
composed of primitives that naturally fall into two 
categories. The first category contains the following five 
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compression algorithms: Arithmetic Coding (AC) [6], 
Lempel-Ziv-Welch LZW [7], unbounded Prediction by 
Partial Matching (PPMD) [8], Run Length Encoding (RLE) 
[9], and Boolean Minimization [10]. In the second category, 
two transformation techniques are included: Burrows-
Wheeler Transformation (BWT) [11] and Move to Front 
(MTF) [12].  Since these are all very well-known techniques, 
we will not provide a detailed explanation of each of these 
compression and transformation algorithms here. 
  We treat each member in the function set as a black box. 
Each compression function receives a stream of data as 
inputs and returns a (typically) smaller stream of compressed 
data as an output. Each transformation function receives a 
stream of data as input and returns a transformed stream of 
data as an output. So, this does not directly produce a 
compression. However often the transformed data are more 
compressible, and so, when passed to a compression 
algorithm in the function set, a better compression ratio is 
achieved 

In the following two subsections we provide further details 
on the system. 

A. Chunking 
The basic idea behind dividing files into chunks is the 

concept of “divide and conquer”. Each member function in 
the function set performs well when it works in the 
circumstances that it has been designed for. Dividing the 
given data into smaller chunks makes the creation and 
identification of such circumstances easier.  

The length of the possible chunks starts from 1600 bytes 
and increases up to 1 Mega byte in increments of 1600 
bytes. Hence, the set of possible lengths for the chunks is 
{1600, 3200, 4800, 6400….1MB}. The number of chunks is 
calculated, by dividing the file size by the chunk length. 
Note that the chunks are not allowed to be bigger than the 
size of the file itself. Moreover, the size of the file is added 
to the set of possible chunk lengths. This is to give GP-zip 
the freedom to choose whether to divide the file into smaller 
chunks as opposed to compressing the whole file as one 
single block.  

B. The approach  
As explained above, the function set is composed of five 

compression algorithms and two transformation algorithms.  
It is clear that we have 15 different possible ways of 
compressing each chunk. Namely, we can apply one of the 
five compression functions without any transformation of 
the data in a block, or we can precede the application of the 
compression function by one of two transformation 
functions.  

GP-zip randomly selects a chunk length from the set of 
possible lengths, and then applies relatively simple 
evolutionary operations. The system starts by initializing a 
population randomly. As exemplified in Figure 1, 
individuals represent a sequence of compression functions 
with or without transformation functions. High-fitness 
individuals are selected with a specific probability and are 
manipulated by crossover, mutation and reproduction 
operations.  

 

 
Fig 1: Individuals within a population 

After the system finds the best possible compression for 
the selected chunk-length, the system suggests another 
length for the chunks and the same process is iterated. 

Since testing all of the possible chunk lengths is very time 
consuming, GP-zip selects the new lengths by performing a 
form of binary search over the set of possible lengths. This is 
applied for the first time after the system has tested two 
chunk lengths. The third chunk length is chosen where, 
based on the results obtained with the first two chunk 
lengths, we would expect to obtain more promising results. 

Since the proposed system divides the data into chunks  
and finds the best possible compression model for them, it is 
necessary for the decompression process to know which 
chunk was compressed with which compression and 
transformation function. A header for the compressed files 
has been designed which provides this information for the 
decompression process. The size of this header is not fixed. 
However, there is an insignificant overhead in comparison 
with size of the original (uncompressed) file. It should be 
noted that the advantages of dividing the data into smaller 
chunks manifest themselves in the decompression stage. 
Firstly, the decompression process can easily decompress a 
section of the data without processing the entire file. 
Furthermore, the decompression process is faster than the 
compression since, in principle, GP-zip can send each chunk 
that needs decompressing to the operating system pipeline 
sequentially. 

IV. EXPERIMENTS  
Experiments have been conducted in order to investigate 

the performance of the proposed technique. The aim of these 
experiments is to measure the performance of GP-zip with 
different data types. The experiments covered three sets of 
data: i) an archive of English text files, ii) an archive of 
executable files, and iii) an archive file that include PDF, 
MP3, Excel sheet, and text files. The total sizes of the data 
sets are 4.07MB, 4.07MB and 1.43MB respectively. Both 
text files and executable files are available in [13]. There is 
no terminating condition for GP-zip. Therefore, GP-zip runs 
until it reaches the maximum number of generations. 

The experiments that are presented here were done using: 
• Population of size 500.  
• Maximum number of generations 1000.  
• One point crossover with probability of 75%.  
• Mutation with probability 5%.  



 
 

• Reproduction with probability of 20% 
• Tournament selection with tournament size 2. 

After applying GP-zip to the set of English text files and 
the set of executable files, the system always converged to 
solutions where each file is treated as a single contiguous 
chunk. Figures 2 and 3 show how the compression ratios 
increase as the number of chunks in these files decrease. 
This is not too surprising since both executable files and 
plain text, statistically, have a very regular structure. 

However, when applying GP-zip to our third data set (an 
archive containing files of different types), the system found 
that dividing the file into a certain number of blocks 
provided best performance.  (Figure 4 shows how the 
compression ratio varies with the number of chunks.) 
Naturally, this had to be expected as it is difficult to process 
the entire data set effectively using only one algorithm. 
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Fig 2: Number of block vs. compression Ratio for the text files.  

Exe Files 

0

5

10

15
20

25
30

35

40

45
50

55

60
65

70

75
80

85

90
95

100

1029 772 141 135 129 86 84 82 50 49 49 48 47 47 20 20 5 5 5 5 1

No. of blocks

R
at

io

 
Fig 3: Number of block vs. compression Ratio for the executable files.  

Archive File 
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Fig 4: Number of block vs. compression Ratio for the archive file 

To evaluate the relative benefits of GP-zip in comparison 
to other widely used techniques, we compared the 
performance of GP-zip against the compression algorithms 
in the function set. Furthermore, bzip2 and WinRar, which 
are amongst the most popular compression algorithms in 
regular use, were included in the comparison.  

The results of the comparison are reported in Table I. In 
the first two data sets, the system decided to process the data 
as one big single block. Consequently, their compression 
ratio is based on the performance of one compression 
function in the function set (in fact, PPMD). So, here GP-zip 
cannot outperform existing algorithms. It did choose, 
however, a very good algorithm to do the compression, 
thereby resulting second best in both categories. 

In the heterogeneous data set, however, GP-zip beats all 
other algorithms by a very considerable margin. More 
precisely GP-zip provides an improvement of compression 
ratio of 10% or more over all others. This shows that there is 
great potential in an evolutionary approach to data 
compression. 

TABLE I 
PERFORMANCE COMPARISON 

Compression \ Files Exe Text Archive 

bzip2 57.86% 77.88% 32.9% 

WinRar- Best 64.68% 81.42% 34.03% 

PPMD 61.84% 79.95% 33.32% 

Boolean Minimization 11.42% 24.24% 3.78% 

LZW 35.75% 56.47% 1.13% 

RLE -4.66% -11.33% -10.20% 

AC 17.46% 37.77% 9.98% 

GP- zip 61.84% 79.95% 43.95% 

 

Although the proposed technique has achieved substantial 
compression ratio with heterogeneous files in comparison 
with the other techniques, it suffers from one major 
disadvantage. Running GP-zip is very time consuming (of 



 
 

the order of a day per megabyte). The reason for this is that, 
each time GP-zip suggests a new chunk length, it executes a 
new GP run which consumes considerably time by itself. 
Therefore, most of time is spent searching for the best 
possible length for the blocks, rather than for choosing how 
to compress the data. 

V. GLUING 
In our experiments we saw that when compressing a 

sequence of continuous data of the same kind, a single 
model is better than dividing the sequence into smaller 
pieces. Why? At one level the answer is intuitive: since the 
data are all of the same kind, GP-zip just decided to use the 
best compression technique for those data. However, in 
principle, one might argue, GP-zip could have decided to use 
the same algorithm to compress every chunk of a data file 
thereby achieving the same result even when a file is divided 
up into many smaller elements. The fallacy of this argument 
resides in the fact, that most compression techniques require 
some header information to be stored (for future 
decompression) before the compression of the actual data 
starts. So, applying say PPMD to the N chunks of a file is 
more expensive (in the sense that it gives a lower 
compression ratio) than applying PPMD on the whole file. 

Fig 5: GP-zip flowchart 

 While this effect is particularly evident on homogeneous 
data, to a smaller scale this can manifest itself also when a 
data file is heterogeneous. It is possible, and in fact likely, 
that GP-zip chromosomes will contain repeated sequences of 
identical primitives, e.g.,  

….[PPMD][PPMD] [LZW][LZW][LZW]…  

If evolution is working well, these repeated sequences will 
typically indicate that the data in the corresponding chunks 
are of similar (or at least compatible) type. This suggests that 
even better compression might be achieved by avoiding 
repeating the header information associated to PPMD or 
LZW in this example.  

Therefore, after GP-zip finds the best length for dividing 
up a given file into chunks, we try to glue together any 
continuous sequence of chunks that use the same functions. 
Gluing is the process of joining subsequence chunks to form 
bigger blocks, with the intention of processing them as one 
unit.  Once we glue the chunks which are associated to the 
same compression and transformation functions, we have 
fewer chunks, which, on average, are of bigger size, leading 
to better compression. It should be noted that the gluing 
process happens only once after GP-zip has determined the 
length for chunks. Figure 5 illustrates GP-zip’s flowchart.  

Table II compares the performance of GP-zip on the 
heterogeneous data files with and without gluing. It is clear 
that gluing further improves the lead of GP-zip over other 
compression algorithms. Gluing the chunks not only 
improves the compression ratio, it also decreases the 
quantity of information stored within the file header.  

 
TABLE II 

GP-ZIP (GLUING) 
Compression/Files Archive 

bzip2 32.9% 

WinRar- Best 34.03% 

PPMD 33.32% 

Boolean Minimization 3.78% 

LZW 1.13% 

RLE -10.20% 

AC 9.98% 

GP- zip 43.95% 

GP- zip (Glue) 49.49% 

VI. CONCLUSION AND FUTURE WORK 
In the field of lossless compression it is very difficult to 

significantly improve on the already excellent performance 
provided by current algorithms. In this research we wanted 
to understand the benefits and limitation of combining 
existing lossless compression algorithms in a way that 
ensure the best possible match between the algorithm being 
used and the type of data it is applied to.  

While other compression algorithms attempt to used 
different techniques on the file to be compressed, and then 
settle for the one that provides the best performance, the 
system we have developed, GP-zip, goes further. It divides 
the data file into smaller chunks and attempts to identify 
what combination of compression algorithms provides the 
best performance.  



 
 

Despite the simplicity of our current realization of this 
idea, the results obtained by GP-zip have been remarkable, 
with GP-zip significantly outperforming other compression 
algorithms on heterogeneous files and never being too far 
from the best with other types of data. Furthermore, a 
significant improvement has been achieved when gluing 
sequences of identical chunks. In future research, we will 
concentrate on this particular aspect of GP-zip as further 
substantial improvements can be expected. 

In addition to providing better compression (in some 
cases), the division of data files into chunks presents the 
additional advantage that, in the decompression process, one 
can decompress a section of the data without processing the 
entire file. This is particularly useful, for example, if the data 
are decompressed for streaming purposes (such as music and 
video files). Also, the decompression process is faster than 
the compression one, as GP-zip can send each compressed 
chunk to the operating system pipeline sequentially. 

Although the proposed technique has achieved substantial 
improvements in compression ratios for heterogeneous files 
in comparison with other techniques, it suffers from one 
major disadvantage. The process of GP-zip is 
computationally expensive. In future research we will also 
concentrate on this aspect of GP-zip. 

Our results are encouraging, in the sense that significant 
improvements have been achieved. There are many 
directions where we can further improve the performance of 
GP-zip. These range, for example, from the simple extension 
of the set of compression and transformation functions 
available in the primitive set to the open ended evolution of 
the compression algorithm to be performed every time a file 
is accessed.  

We will explore these avenues in future research. 
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