

Abstract— In this paper we propose a new approach for
applying Genetic Programming to lossless data compression
based on combining well-known lossless compression
algorithms. The file to be compressed is divided into chunks of
a predefined length, and GP is asked to find the best possible
compression algorithm for each chunk in such a way to
minimise the total length of the compressed file. This technique
is referred to as “GP-zip”. The compression algorithms
available to GP-zip (its function set) are: Arithmetic coding
(AC), Lempel-Ziv-Welch (LZW), Unbounded Prediction by
Partial Matching (PPMD), Run Length Encoding (RLE), and
Boolean Minimization. In addition, two transformation
techniques are available: Burrows-Wheeler Transformation
(BWT) and Move to Front (MTF). In experimentation with this
technique, we show that when the file to be compressed is
composed of heterogeneous data fragments (as is the case, for
example, in archive files), GP-zip is capable of achieving
compression ratios that are superior to those obtained with
well-known compression algorithms.

I. INTRODUCTION

One of the paradoxes of technology evolution is that
despite the development of computers and the increasing
need for storing information, there is a lack of development
of compression techniques. As the evolution of computer
systems progresses rapidly, the amount of stored information
will increase at the same rate. Researchers in the
compression field tend to develop algorithms that work with
specific types of data, taking advantage of any available
knowledge about the data. It is difficult to find a universal
compression algorithm that performs well on any data type
[1]. Two principles are commonly accepted in the field of
data compression: a) there is no algorithm that is able to
compress all the files even by 1 byte, and b) there are less
than 1% of all files that can be compressed losslessly by 1
byte [1] .
 Consequently, the development of generic compression
algorithms is attracting less attention. Nevertheless their
importance should not be underestimated, as they are useful
when the nature and regularities of a given data file is not
predictable. For example, in archive systems, the users need
to compress huge amounts of different data, such as text,
music, pictures, video and so forth. A single universal
compression model would be preferable in this case.

We have mentioned that best compression can be
achieved when applying a compression algorithm
specialised for the type of data that need compressing. In this

Ahmad Kattan is with the Department of Computing and Electronic
Systems, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK;
(email: akatta@essex.ac.uk).
Riccardo Poli is with the Department of Computing and Electronic Systems,
University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK; (email:
rpoli@essex.ac.uk).

paper we investigate the idea of evolving programs that
attempt to identify what is the best way of applying different
compression algorithms to different parts of a data file so as
to best match the nature of such data.

The structure of this paper is as follows. In Section II
some related work is briefly reviewed. Section III discusses
our system, GP-zip, in detail. This is followed by
experimental results with GP-zip in Section IV. Section V
proposes a further improvement to GP-zip which
significantly improves compression ratios. Finally,
conclusive marks are given in Section VI.

II. RELATED WORK
Data compression requires highly specialized procedures.

Therefore, evolving a data compression algorithm is not an
easy task. Few attempts have been made to use of
evolutionary algorithms to evolve data compression models.

There are two main approaches for the use of evolutionary
computations in data compression. The first is the use of
genetic algorithms to find parameters for a compression
algorithm with the aim of maximising the compression ratio.
The second approach is the use of genetic programming
(GP) for what is called programmatic compression [3]. Of
the two, the latter is much more powerful, at least in
principle, as was demonstrated by Nordin and Banzhaf who
used GP to achieve lossy compression for images and
sounds [3]. Others have also used genetic programming in
developing compression models. For example, [4] used
genetic programming for string compression. Fukunaga and
Stechert [5] developed a nonlinear predictive model to
compress grey scale images. Parent and Nowe [2] used
genetic programming to reduce the entropy of the data. They
evolved transformation programs in order to maximize
compression ratios when applying the transformed data to
lossless compression algorithms.

III. GP-ZIP
Over the past decade many techniques have been

developed for lossless compression, each of which has their
own particular advantages and disadvantages. Each performs
well on the data domain that they are designed to work in.
Unfortunately, no single compression algorithm exists that is
reliable for all known data types. Here we investigate how to
evolve a program that matches different parts of a data file
with the best possible compression model for them. Our
approach works as follows.

We divide the given data file into chunks of a certain
length and ask GP to identify the best possible compression
technique for each chunk. The function set of GP-zip is
composed of primitives that naturally fall into two
categories. The first category contains the following five

Evolutionary Lossless Compression with GP-ZIP
Ahmad Kattan and Riccardo Poli

compression algorithms: Arithmetic Coding (AC) [6],
Lempel-Ziv-Welch LZW [7], unbounded Prediction by
Partial Matching (PPMD) [8], Run Length Encoding (RLE)
[9], and Boolean Minimization [10]. In the second category,
two transformation techniques are included: Burrows-
Wheeler Transformation (BWT) [11] and Move to Front
(MTF) [12]. Since these are all very well-known techniques,
we will not provide a detailed explanation of each of these
compression and transformation algorithms here.
 We treat each member in the function set as a black box.
Each compression function receives a stream of data as
inputs and returns a (typically) smaller stream of compressed
data as an output. Each transformation function receives a
stream of data as input and returns a transformed stream of
data as an output. So, this does not directly produce a
compression. However often the transformed data are more
compressible, and so, when passed to a compression
algorithm in the function set, a better compression ratio is
achieved

In the following two subsections we provide further details
on the system.

A. Chunking
The basic idea behind dividing files into chunks is the

concept of “divide and conquer”. Each member function in
the function set performs well when it works in the
circumstances that it has been designed for. Dividing the
given data into smaller chunks makes the creation and
identification of such circumstances easier.

The length of the possible chunks starts from 1600 bytes
and increases up to 1 Mega byte in increments of 1600
bytes. Hence, the set of possible lengths for the chunks is
{1600, 3200, 4800, 6400….1MB}. The number of chunks is
calculated, by dividing the file size by the chunk length.
Note that the chunks are not allowed to be bigger than the
size of the file itself. Moreover, the size of the file is added
to the set of possible chunk lengths. This is to give GP-zip
the freedom to choose whether to divide the file into smaller
chunks as opposed to compressing the whole file as one
single block.

B. The approach
As explained above, the function set is composed of five

compression algorithms and two transformation algorithms.
It is clear that we have 15 different possible ways of
compressing each chunk. Namely, we can apply one of the
five compression functions without any transformation of
the data in a block, or we can precede the application of the
compression function by one of two transformation
functions.

GP-zip randomly selects a chunk length from the set of
possible lengths, and then applies relatively simple
evolutionary operations. The system starts by initializing a
population randomly. As exemplified in Figure 1,
individuals represent a sequence of compression functions
with or without transformation functions. High-fitness
individuals are selected with a specific probability and are
manipulated by crossover, mutation and reproduction
operations.

Fig 1: Individuals within a population

After the system finds the best possible compression for
the selected chunk-length, the system suggests another
length for the chunks and the same process is iterated.

Since testing all of the possible chunk lengths is very time
consuming, GP-zip selects the new lengths by performing a
form of binary search over the set of possible lengths. This is
applied for the first time after the system has tested two
chunk lengths. The third chunk length is chosen where,
based on the results obtained with the first two chunk
lengths, we would expect to obtain more promising results.

Since the proposed system divides the data into chunks
and finds the best possible compression model for them, it is
necessary for the decompression process to know which
chunk was compressed with which compression and
transformation function. A header for the compressed files
has been designed which provides this information for the
decompression process. The size of this header is not fixed.
However, there is an insignificant overhead in comparison
with size of the original (uncompressed) file. It should be
noted that the advantages of dividing the data into smaller
chunks manifest themselves in the decompression stage.
Firstly, the decompression process can easily decompress a
section of the data without processing the entire file.
Furthermore, the decompression process is faster than the
compression since, in principle, GP-zip can send each chunk
that needs decompressing to the operating system pipeline
sequentially.

IV. EXPERIMENTS
Experiments have been conducted in order to investigate

the performance of the proposed technique. The aim of these
experiments is to measure the performance of GP-zip with
different data types. The experiments covered three sets of
data: i) an archive of English text files, ii) an archive of
executable files, and iii) an archive file that include PDF,
MP3, Excel sheet, and text files. The total sizes of the data
sets are 4.07MB, 4.07MB and 1.43MB respectively. Both
text files and executable files are available in [13]. There is
no terminating condition for GP-zip. Therefore, GP-zip runs
until it reaches the maximum number of generations.

The experiments that are presented here were done using:
• Population of size 500.
• Maximum number of generations 1000.
• One point crossover with probability of 75%.
• Mutation with probability 5%.

• Reproduction with probability of 20%
• Tournament selection with tournament size 2.

After applying GP-zip to the set of English text files and
the set of executable files, the system always converged to
solutions where each file is treated as a single contiguous
chunk. Figures 2 and 3 show how the compression ratios
increase as the number of chunks in these files decrease.
This is not too surprising since both executable files and
plain text, statistically, have a very regular structure.

However, when applying GP-zip to our third data set (an
archive containing files of different types), the system found
that dividing the file into a certain number of blocks
provided best performance. (Figure 4 shows how the
compression ratio varies with the number of chunks.)
Naturally, this had to be expected as it is difficult to process
the entire data set effectively using only one algorithm.

Text Files

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

3086 1028 74 72 71 69 5 5 5 5 5 5 1

No. of Blocks

R
at

io

Fig 2: Number of block vs. compression Ratio for the text files.

Exe Files

0

5

10

15
20

25
30

35

40

45
50

55

60
65

70

75
80

85

90
95

100

1029 772 141 135 129 86 84 82 50 49 49 48 47 47 20 20 5 5 5 5 1

No. of blocks

R
at

io

Fig 3: Number of block vs. compression Ratio for the executable files.

Archive File

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

117
9

94
4

786 18
9

158 13
5

118 10
5 95 86 79 73 68 63 59 56 53 21 21 20 20 19 19 19 18 18 18 17 17 17 16 16 16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1

No. of Blocks

R
at

io

Fig 4: Number of block vs. compression Ratio for the archive file

To evaluate the relative benefits of GP-zip in comparison
to other widely used techniques, we compared the
performance of GP-zip against the compression algorithms
in the function set. Furthermore, bzip2 and WinRar, which
are amongst the most popular compression algorithms in
regular use, were included in the comparison.

The results of the comparison are reported in Table I. In
the first two data sets, the system decided to process the data
as one big single block. Consequently, their compression
ratio is based on the performance of one compression
function in the function set (in fact, PPMD). So, here GP-zip
cannot outperform existing algorithms. It did choose,
however, a very good algorithm to do the compression,
thereby resulting second best in both categories.

In the heterogeneous data set, however, GP-zip beats all
other algorithms by a very considerable margin. More
precisely GP-zip provides an improvement of compression
ratio of 10% or more over all others. This shows that there is
great potential in an evolutionary approach to data
compression.

TABLE I
PERFORMANCE COMPARISON

Compression \ Files Exe Text Archive

bzip2 57.86% 77.88% 32.9%

WinRar- Best 64.68% 81.42% 34.03%

PPMD 61.84% 79.95% 33.32%

Boolean Minimization 11.42% 24.24% 3.78%

LZW 35.75% 56.47% 1.13%

RLE -4.66% -11.33% -10.20%

AC 17.46% 37.77% 9.98%

GP- zip 61.84% 79.95% 43.95%

Although the proposed technique has achieved substantial
compression ratio with heterogeneous files in comparison
with the other techniques, it suffers from one major
disadvantage. Running GP-zip is very time consuming (of

the order of a day per megabyte). The reason for this is that,
each time GP-zip suggests a new chunk length, it executes a
new GP run which consumes considerably time by itself.
Therefore, most of time is spent searching for the best
possible length for the blocks, rather than for choosing how
to compress the data.

V. GLUING
In our experiments we saw that when compressing a

sequence of continuous data of the same kind, a single
model is better than dividing the sequence into smaller
pieces. Why? At one level the answer is intuitive: since the
data are all of the same kind, GP-zip just decided to use the
best compression technique for those data. However, in
principle, one might argue, GP-zip could have decided to use
the same algorithm to compress every chunk of a data file
thereby achieving the same result even when a file is divided
up into many smaller elements. The fallacy of this argument
resides in the fact, that most compression techniques require
some header information to be stored (for future
decompression) before the compression of the actual data
starts. So, applying say PPMD to the N chunks of a file is
more expensive (in the sense that it gives a lower
compression ratio) than applying PPMD on the whole file.

Fig 5: GP-zip flowchart

 While this effect is particularly evident on homogeneous
data, to a smaller scale this can manifest itself also when a
data file is heterogeneous. It is possible, and in fact likely,
that GP-zip chromosomes will contain repeated sequences of
identical primitives, e.g.,

….[PPMD][PPMD] [LZW][LZW][LZW]…

If evolution is working well, these repeated sequences will
typically indicate that the data in the corresponding chunks
are of similar (or at least compatible) type. This suggests that
even better compression might be achieved by avoiding
repeating the header information associated to PPMD or
LZW in this example.

Therefore, after GP-zip finds the best length for dividing
up a given file into chunks, we try to glue together any
continuous sequence of chunks that use the same functions.
Gluing is the process of joining subsequence chunks to form
bigger blocks, with the intention of processing them as one
unit. Once we glue the chunks which are associated to the
same compression and transformation functions, we have
fewer chunks, which, on average, are of bigger size, leading
to better compression. It should be noted that the gluing
process happens only once after GP-zip has determined the
length for chunks. Figure 5 illustrates GP-zip’s flowchart.

Table II compares the performance of GP-zip on the
heterogeneous data files with and without gluing. It is clear
that gluing further improves the lead of GP-zip over other
compression algorithms. Gluing the chunks not only
improves the compression ratio, it also decreases the
quantity of information stored within the file header.

TABLE II

GP-ZIP (GLUING)
Compression/Files Archive

bzip2 32.9%

WinRar- Best 34.03%

PPMD 33.32%

Boolean Minimization 3.78%

LZW 1.13%

RLE -10.20%

AC 9.98%

GP- zip 43.95%

GP- zip (Glue) 49.49%

VI. CONCLUSION AND FUTURE WORK
In the field of lossless compression it is very difficult to

significantly improve on the already excellent performance
provided by current algorithms. In this research we wanted
to understand the benefits and limitation of combining
existing lossless compression algorithms in a way that
ensure the best possible match between the algorithm being
used and the type of data it is applied to.

While other compression algorithms attempt to used
different techniques on the file to be compressed, and then
settle for the one that provides the best performance, the
system we have developed, GP-zip, goes further. It divides
the data file into smaller chunks and attempts to identify
what combination of compression algorithms provides the
best performance.

Despite the simplicity of our current realization of this
idea, the results obtained by GP-zip have been remarkable,
with GP-zip significantly outperforming other compression
algorithms on heterogeneous files and never being too far
from the best with other types of data. Furthermore, a
significant improvement has been achieved when gluing
sequences of identical chunks. In future research, we will
concentrate on this particular aspect of GP-zip as further
substantial improvements can be expected.

In addition to providing better compression (in some
cases), the division of data files into chunks presents the
additional advantage that, in the decompression process, one
can decompress a section of the data without processing the
entire file. This is particularly useful, for example, if the data
are decompressed for streaming purposes (such as music and
video files). Also, the decompression process is faster than
the compression one, as GP-zip can send each compressed
chunk to the operating system pipeline sequentially.

Although the proposed technique has achieved substantial
improvements in compression ratios for heterogeneous files
in comparison with other techniques, it suffers from one
major disadvantage. The process of GP-zip is
computationally expensive. In future research we will also
concentrate on this aspect of GP-zip.

Our results are encouraging, in the sense that significant
improvements have been achieved. There are many
directions where we can further improve the performance of
GP-zip. These range, for example, from the simple extension
of the set of compression and transformation functions
available in the primitive set to the open ended evolution of
the compression algorithm to be performed every time a file
is accessed.

We will explore these avenues in future research.

REFERENCES
[1] I. M. Pu, Fundamental Data Compression, HB, ISBN-13: 978-0-

7506-6310-62006. Chapter 1
[2] J. Parent and A. Nowe, Evolving Compression Preprocessors with

Genetic Programming, GECCO 2002: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 861-867, Morgan
Kaufmann Publishers, 9-13 July 2002.

[3] P. Nordin and W. Banzhaf, Programmatic Compression of Images
and Sound, Genetic Programming 1996: Proceedings of the First
Annual Conference, pp. 345-350, MIT Press, 28-31 July 1996.

[4] I. De Falco and A. Iazzetta and E. Tarantino and A. Della Cioppa and
G. Trautteur, A Kolmogorov Complexity-based Genetic Programming
tool for string compression, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2000), pp. 427-434,
Morgan Kaufmann, 10-12 July 2000.

[5] A. Fukunaga and A. Stechert, Evolving Nonlinear Predictive Models
for Lossless Image Compression with Genetic Programming, Genetic
Programming 1998: Proceedings of the Third Annual Conference, pp.
95-102, Morgan Kaufmann, 22-25 July 1998.

[6] I. Witten and R. Neal and J. Cleary, Arithmetic coding for data
compression, Communications of the ACM, Vol. 30, pp. 520-541,
1987.

[7] J. Ziv and A. Lempel, Compression of Individual Sequences via
Variable-Rate Coding, IEEE Transactions on Information Theory,
September 1978.

[8] J. G. Cleary and W. J. Teahan and Ian H. Witten,
Unbounded Length Contexts for PPM, Data Compression Conference,
pp. 52-61, 1995.

[9] S. W. Golomb, Run-length encodings, IEEE Trans. Inform. Theory,
Vol. IT-12, pp. 399-401, 1966.

[10] A. Kattan, Universal Lossless Data Compression with built in
Encryption. Master Thesis, University of Essex 2006.

[11] M. Burrows and D. J. Wheeler, A block-sorting lossless data
compression algorithm, SRC, Number 124, 1994.

[12] Z. Arnavut, Move-to-Front and Inversion Coding,
DCC: Data Compression Conference, IEEE Computer Society TCC,
2000.

[13] ACT Archive Compression Test [cited 2 December 2007]; Available
from: http://compression.ca/act/act-win.html

