
Evolving Optimal Agendas for Package Deal Negotiation

Shaheen Fatima
Loughborough University

Department of Computer Science
Loughborough LE11 3TU, UK

s.s.fatima@lboro.ac.uk

Ahmed Kattan
Loughborough University

Department of Computer Science
Loughborough LE11 3TU, UK

a.j.kattan@lboro.ac.uk

ABSTRACT
This paper presents a hyper GA system to evolve optimal
agendas for package deal negotiation. The proposed sys-
tem uses a Surrogate Model based on Radial Basis Func-
tion Networks (RBFNs) to speed up the evolution. The
negotiation scenario is as follows. There are two negotia-
tors/agents (a and b) and m issues/items available for ne-
gotiation. But from these m issues, the agents must choose
g < m issues and negotiate on them. The g issues thus cho-
sen form the agenda. The agenda is important because the
outcome of negotiation depends on it. Furthermore, a and
b will, in general, get different utilities/profits from different
agendas. Thus, for competitive negotiation (i.e., negotiation
where each agent wants to maximize its own utility), each
agent wants to choose an agenda that maximizes its own
profit. However, the problem of determining an agent’s op-
timal agenda is complex, as it requires combinatorial search.
To overcome this problem, we present a hyper GA method
that uses a Surrogate Model based on Radial Basis Func-
tion Networks (RBFNs) to find an agent’s optimal agenda.
The performance of the proposed method is evaluated ex-
perimentally. The results of these experiments demonstrate
that the surrogate assisted algorithm, on average, performs
better than standard GA and random search.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Game Theory; I.2.8 [Heuristic
Methods]; I.2.11 [Intelligent Agents]; I.2.11 [Multiagent
Systems]: Electronic Commerce; J.4 [Economics]: [Nego-
tiation Agendas]

General Terms
Theory

1. INTRODUCTION

Negotiation is a process in which disputing agents decide
how to divide the gains from cooperation between them-

GECCO’11, July 12–16, 2011, Dublin, Ireland.

selves. Since this decision is made jointly by the agents [15],
each agent can only obtain what the other is prepared to
allow them. The simplest form of negotiation involves two
agents and a single-issue. For example, consider a scenario
in which a buyer and a seller negotiate on the price of a
good. To begin, the two agents are likely to differ on the
price at which they believe the trade should take place, but
through a process of joint decision-making they either ar-
rive at a price that is mutually acceptable or they fail to
reach an agreement. Since agents are likely to begin with
different prices, one or both of them must move toward the
other, through a series of offers and counter offers, in order
to obtain a mutually acceptable outcome.

However, before the agents can actually perform such nego-
tiations, they must decide the rules for making offers and
counter offers. These rules are called the negotiation pro-
tocol or procedure [16, 6]. On the basis of this procedure,
each agent chooses its strategy (i.e., what offers to make dur-
ing the course of negotiation). For competitive negotiations,
which are the focus of this work, each agent chooses a strat-
egy that maximizes its own utility/profit and is therefore its
optimal strategy. For example, buyer-seller negotiations are
competitive in nature. For such negotiations, game theory
[14] provides methods for analyzing the strategic behavior of
utility maximizing agents. It provides methods for identify-
ing those strategies that are optimal and stable. Strategies
that are optimal and stable are said to form an equilibrium.
There are various notions of equilibrium but the one relevant
to our work is Nash equilibrium [14].

Now, in many buyer-seller negotiations, the agents need to
settle the price of not one but multiple items. Such ne-
gotiations are called multi-issue negotiations [10]. Multiple
issues can be negotiated using different procedures. These
include the package deal procedure (PDP), the sequential
procedure (SQP), and the simultaneous procedure (SP). Dif-
ferent procedures are known to result in different outcomes,
and the choice of a procedure depends on the characteristics
of its outcome. One of the desirable characteristics is Pareto-
efficiency. Between the PDP, the SQP, and the SP, only the
PDP is known to result in Pareto-efficient outcomes. The
PDP will therefore be the focus of this work.

For the PDP all the issues are bundled and discussed to-
gether as a package [3]. Now, for the PDP, the outcome
depends on the set of issues chosen for negotiation. This
set is called the negotiation agenda. Different agendas yield

different profits to the agents [6]. So an agent wants to know
what agenda maximizes its profit and is therefore its opti-
mal agenda. In many real-world settings, a negotiator has
the option of choosing an agenda. For example, consider a
car dealer who has m cars to sell. A potential buyer may
be interested in buying g < m of these. So the buyer must
first choose which cars to negotiate the price for (i.e., from
all possible subsets of size g, the buyer must choose the one
that maximises its utility). Note that here, the buyer has
choice over the agenda but the seller does not. Given this,
our goal is to determine what agenda will be optimal from
the perspective of an individual agent (i.e., the buyer).

In more detail, there are C(m, g) possible agendas of size
g. In order to find which of these is optimal for the buyer,
we need to determine the buyer’s equilibrium profit for each
possible agenda and then choose the one that yields highest
profit. Thus, we have two problems to solve:

P For a given agenda, determine the buyer’s equilibrium
utility. This is a constrained nonlinear optimization
problem.

Q Search the space of C(m, g) possible agendas and choose
the one that yields highest equilibrium utility to the
buyer. Here the size of search space is combinatorial.

Thus, both P and Q are computationally complex problems.
Hence we need a solution method that is computationally
feasible. To this end, we propose a hyper GA system to
solve P and Q. The proposed system uses a Surrogate Model
based on Radial Basis Function Networks (RBFNs) to evolve
optimal agendas. The system is comprised of two GA sys-
tems: an outer GA and an inner GA. The inner GA solves
the problem P while the outer GA solves Q. The outer GA
is assisted by a surrogate model based on Radial Basis Func-
tion Networks (RBFNs) (Sections 5 and 4 provide details).
In the course of evolution, the surrogate’s role is to point
to the most promising agendas, and thereby speed up the
process of evolutionary search.

In order to evaluate the effectiveness of the proposed method,
we experimentally compared its performance with that of
two other methods: standard GA and random search. This
comparison was done on the basis of an agent’s profits from
the optimal agendas generated by these methods. The re-
sults of these experiments demonstrate that the proposed
surrogate assisted algorithm, on average, performs better
that a standard genetic algorithm and random search.

This paper makes the following main contribution. We present
a new method for determining an agent’s optimal agenda
and the optimal allocations for the agenda, for the PDP.
Most of the existing work on negotiation has taken the agenda
as given, and dealt with finding effective methods for deter-
mining the equilibrium. However, the agenda is a key negoti-
ation parameter and it is crucial in determining the outcome
of negotiation. Thus, from the perspective of competitive
agents, it is important not just to optimally negotiate over a
given set of issues, but also to choose the best agenda before
negotiation begins. The proposed method allows agents to
perform both these tasks.

The rest of this paper is organised as follows. Section 2
discusses previous work related to this research. Section 4
provides background on RBFNs and its mathematical no-
tation. In Section 5, a detailed description of the proposed
model is given. Section 6 describes the experimental eval-
uation of the proposed model, and Section 7 provides an
analysis of the results. Finally, Section 8 draws conclusions.

2. RELATED LITERATURE
We first discuss related work for negotiation and optimal
agendas, and then for surrogate models.

2.1 Optimal Agendas
Negotiation has long been studied by game theorists. How-
ever, in this work, the analysis of negotiation typically begins
with a given set of issues and the parties’ utilities for dif-
ferent possible settlements of the issues. Within this frame-
work, theorists have investigated a range of procedures such
as the PDP, the SP, and the SQP [6] and shown that different
procedures yield different outcomes. Hence, it is important
to choose the right procedure. Furthermore, irrespective of
the procedure, it is important to choose the right agenda.

Although the importance of agendas has been recognised,
most existing work has taken the set of issues as given and
analysed the equilibrium for different procedures. For in-
stance, [6, 1, 7] takes the set of issues as given and shows
that the order in which they are negotiated is important in
determining the outcome. The problem of determining op-
timal agendas for the PDP was addressed in [5], but in the
context of linear utilities. In contrast with [5], the focus of
this paper is on non-linear utility functions.

2.2 Surrogate Models
When the objective functions are expensive to evaluate, a
single optimisation case can take a very long time and make
the optimisation process infeasible. Furthermore, optimiza-
tion problems are, in many cases, black-box problems, i.e.,
whose problem class is unknown, and they are possibly math-
ematically ill-behaved (e.g., discontinuous, non-linear, non-
convex). Possible ways of dealing with such optimization
problems, include the use of use a high-performance com-
puting technology with multi-threading programming, or
an approximation model that approximates a given objec-
tive function. Surrogate models are approximation models
that have been employed to tackle expensive objective func-
tions. In these models, some of commonly used approxima-
tions include, Polynomial Regression (PR), Artificial Neural
Networks (ANN), Radial Basis Function Networks (RBFNs)
and Support Vector Machines (SVM) [8]. Existing work on
surrogate models includes the following.

Lim et al. in [12], proposed a generalised surrogate-assisted
evolutionary frameworks for optimisation of problems that
are computationally expensive to evaluate. The authors in-
troduced the idea of employing several on-line locale surro-
gate models which are constructed using data points that
lie in the vicinity of an initial guess. The improved solu-
tions generated by the local search surrogates are used to
replace the original individual. In this work, the framework
has been presented with single objective optimisation and
multi-objective optimisation.

In [11], proposed an enhancement for GA by using local
surrogate search to expedite convergence of GA. The model
uses GA to generate a population of individuals and rank
them with the real function. Afterwards, gradient-based lo-
cal search is performed on the surrogate model to find new
promising solutions. The GA and local search are alterna-
tively used under a trust-region framework until optimum
found. The trust-region framework is used to assure that
the surrogate’s solutions are converging toward the original
problem.

Recently in [13], Moraglio and Kattan showed that sur-
rogate models can be naturally generalised to encompass
combinatorial spaces based in principle on any arbitrarily
complex underlying solution representation by generalising
their geometric interpretation from continuous to general
metric spaces. An illustrative example is given related to Ra-
dial Basis Function Networks (RBFNs), which can be used
successfully as surrogate models to optimise combinatorial
problems defined on the Hamming space associated with bi-
nary strings. The authors illustrated the methodology with
NK-landscape problem.

Traditional surrogate model based optimisation (SMBO) [9,
13, 11, 12, 8] uses generational evolutionary procedure to
infer the location of a promising solution (with the assump-
tion that its cost is negligible in comparison to the expensive
objective function). In contrast, in the proposed surrogate
model, we use a local search process on the surrogate train-
ing set (details in Section 5). This local search uses char-
acteristics specific to the problem, in order to speed up the
search and to generate better solutions.

3. THE NEGOTIATION MODEL
As mentioned in Section 1, our aim is to effectively solve
problems P and Q. In this section, we define the prob-
lem P in more detail. This problem requires determining
the buyer’s/seller’s equilibrium utility for a given agenda.
Thus, we have two versions of problem P : one for the buyer
denoted Pb, and another for the seller denoted Ps. Now, an
agent’s equilibrium utility depends on the negotiation set-
ting, which is defined as follows.

There are two negotiating agents called a (a seller) and b (a
buyer). There is a set I = {1, 2, . . . , m} of m issues/items.
The agents are negotiating the price of these items. Each
issue is represented as a divisible ‘pie’ of size one. So the
agents are negotiating about how to split each pie between
themselves. If we use xa

i and xb
i (where xa

i ∈ [0, 1] and xb
i ∈

[0, 1]) to denote a’s and b’s shares for issue i respectively,
then

xa
i + xb

i = 1.

The issues are negotiated using a two-round PDP. This pro-
cedure is an alternating offers protocol [14] in which one of
the agents, say a, starts in the first round (t = 1) by offering
xa (where xa

i ∈ [0, 1]) to b.

Here xa denotes a vector that specifies an offer for each of
the m issues. Agent b can accept/reject the offer. If it
accepts, negotiation ends in an agreement with a getting
xa and b getting xb = 1 − xa. Otherwise, it goes to the

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

40

50

60

70

80

90

xb
1

The buyer’s utility function

xb
2

B
uy

er
’s

 u
til

ity

Figure 1: Landscape for the Rastrigin function.

round two (t = 2), when b makes an offer. If a accepts this,
negotiation ends successfully in an agreement. Otherwise, it
ends in a conflict and both agents get zero utility. Note that
an agent is allowed to either accept a complete offer (i.e.,
the allocations for all the issues) or reject a complete offer.

For time t ≤ 2, agent a’s cumulative utility/profit from xa

is defined as follows:

Ua(xa, t) = δt−1
m

X

i=1

Ca
i xa

i (1)

where Ca
i ∈ R+ are real valued constants, and 0 ≤ δ ≤ 1 is

the discount factor1. Agent b’s cumulative utility/profit is
defined with the Rastrigin function as follows:

Ub(xb, t) = δt−1 ×
„

36g −
g

X

i=1

Cb
i [(10.24xb

i − 5.12)2

−10 cos(2π(10.24xb
i − 5.12))]

«

(2)

where Cb
i ∈ R+ are real valued constants. The reason for

choosing the Rastrigin function is that it represents a non-
linear landscape with a high degree of ruggedness (i.e., it
has the key features of a typical utility function). Moreover,
the ruggedness can be varied by suitably varying the param-
eters of this function. Figure 1 shoes the landscape for the
Rastrigin function.

Since it is a two-round PDP, an agent’s utility for t > 2
is zero. For this model, the equilibrium was given in [4].
Below, we give a brief overview of this equilibrium.

Let sa(I, t) (sb(I, t)) denote a’s (b’s) equilibrium strategy
for time t for the issues in I. At t = 2, the offering agent

1The discount factor is a constant that indicates the rate at
which utility gets discounted with time.

proposes to keep a 100% of all the pies and the other agent
accepts [4]. In the previous round, t = 1, the offering agent
(say b) offers (xa, xb) such that a’s cumulative utility from
it is what a would get from its own offer for t = 2. If there
is more than one such (xa, xb), then b must choose the one
that maximizes its own utility. If we let Qa

t (Qb
t) denote a’s

(b’s) equilibrium utility for t, and 0 (1) denote a vector of
m zeros (ones) we get:

Qa
2 = δ

m
X

i=1

Ca
i

and

Qb
2 = Ub(1, 1).

So b must solve the following trade-off problem (called Pb(I, 1))
at t = 1:

Pb(I, 1) : MAX Ub(xb, 1)

s.t. Ua(xa, 1) ≥ Qa
2 xa

i ∈ [0, 1]; xb
i = 1 − xa

i

For agent a, the trade-off problem is defined as follows:

Pa(I, 1) : max Ua(xa, 1)

s.t. Ub(xb, 1) ≥ Qb
2 xa

i ∈ [0, 1]; xb
i = 1 − xa

i

Both Pa and Pb are nonlinear optimization problems. The
agents’ equilibrium strategies are defined in terms of Pa and
Pb as follows.

sb(I, 2) =

ȷ

offer (1, 0) If b’s turn to offer
accept If b’s turn to receive

For t = 1, the strategies are:

sb(I, 1) =

8

>

>

<

>

>

:

offer Pb(I, 1) If b’s turn to offer

If (Ub(xb, 1) ≥ Qb
2) If b receives (xa, xb)

accept else reject

Agent a’s strategy (sa) is defined analogously in terms of Pa.
The above strategies form a Nash equilibrium and result in
an agreement at t = 1.

Given the above equilibrium, we can determine each agent’s
utility for a given agenda, and, on the basis os these, deter-
mine what agenda will maximize b’s utility.

Before closing this section, we will formally define the terms
agenda and optimal agenda.

3.1 The Negotiation Agenda
The term agenda is defined as follows:

Definition 1. Agenda: Given the set I of m issues and
an integer g ≤ m, an agenda Ag is a set of g issues, i.e.,
Ag ⊆ I where |Ag| = g.

Let AGg denote the set of all possible agendas of size g.
Then, an agent’s optimal agenda is defined as follows:

Definition 2. Optimal agenda: Given the set I of m
issues and an integer g ≤ m, an agenda (ABg) is agent b’s
optimal agenda if:

ABg = arg max
X∈AGg

Ub(sb(X, 1), 1).

We showed how to find equilibrium for the set I. Given this
equilibrium, the problem Q is to find ABg. Sections 4 and
5 describe our approach for solving the problems P and Q.

4. RADIAL BASIS FUNCTION NETWORKS
The evaluation of the functions in Pa and Pb (described in
Section 3) requires an optimisation process which may be
time consuming. Thus, instead of evaluating these functions
while exploring the space of possible agendas C(m, g), we
want to replace it with a surrogate model that approximates
Ub. If Ub approximation is promising, then we pass it to the
real function described in Section 3 to calculate its real value.

There are a number of known approaches to learn a function
belonging to a certain class of functions from existing data-
points (i.e., finding a function in that class that interpolates
and best fits the data-points according to some criteria).
These include Genetic Programming, Radial Basis Function
Network Interpolation, and Gaussian Process Regression.

Genetic programming is very powerful framework for ap-
proximating unknown functions. However, its direct imple-
mentation is not suitable to be used as surrogate because of
its expensive learning process. Gaussian Process Regression
has been often used as an approximation model with a solid
theoretical foundation, which not only can make a ratio-
nal extrapolation about the location of the global optimum,
but also gives an interval of confidence about the predic-
tion made. Radial Basis Function Network Interpolation is
conceptually simpler than Gaussian Process Regression and
can extrapolate the global optimum from the known data-
points. In this paper, we decided to use the RBFNs because
its simplicity and effectiveness [2]. As we will show in the
section on experiments, this has worked well.

4.1 RBFN Representation
RBFNs can be seen as a variant of artificial neural network
that uses radial basis functions as activation functions [2].
They have been used in function approximation, time series
prediction, and control [2]. A radial basis function (RBF)
is a real-valued function ϕ : Rn → R whose value depends
only on the distance from some point c, called a center, so
that

ϕ(x) = ϕ(∥xq − c∥)
. The point c is a parameter of the function and the point
xq is the query point to be estimated. The norm is usually
Euclidean, so ∥x − c∥ is the Euclidean distance between c
and x. Since we use a generalised RBFN [13], the Euclidean
distance has been replaced with a metric distance that nat-
urally encompass the GA representation of our optimisation
problems Pa and Pb (see Section 4.3). The most common
used types of radial basis functions is the Gaussian functions
of the form

ϕ(x) = exp(−β∥x − c∥2)

where β > 0 is the width parameter. Radial basis functions
are typically used to build function approximations of the
form:

y(x) = w0 +

N
X

i=1

wi ϕ(∥x − ci∥) (3)

Thus, y(x) is used to approximate Ub. The approximat-
ing function y(x) is represented as a sum of N radial basis
functions, each associated with a different center ci, a dif-
ferent width βi, and different weight wi, plus a bias term
w0. In principle, any continuous function can be approxi-
mated with arbitrary accuracy by a sum of this form, if a
sufficiently large number N of radial basis functions is used.
The bias w0 can be set to the mean of the values of the
known data-points from the training set that used to train
the surrogate model, or set to 0.

4.2 Training
Training the RBFNs amounts to find three parameters: i)
the centres ci, ii) the values of wi in such a way that the
predictions on the training set minimises the errors and iii)
the RBF width parameters βi.

The centers are chosen to coincide with the known data-
points and evaluated with the real fitness function. The β
value can either fixed for all N linear RBFs (global) or dif-
ferent for different RBFs (local). In this paper, we use local
β for each RBFs where β is 1/D2 where D is the mean pair-
wise swap distance between the query data-point and its n
closest neighbours in the training set.2 Preliminary experi-
ments show that the best value of n is 40% of the training
set size. The value of β controls the radius of each RBF to
spread on the space to cover all other centres so that each
known function value at a center can potentially contribute
significantly to the prediction of the function value of any
point in space, and not only locally to function values of
points near the given center.

Finally, the weights vector is calculated by solving the sys-
tem of N simultaneous linear equations in wi obtained by
requiring that the unknown function interpolates exactly the
known data-points

y(xi) = bi, i = 1 . . . N

By setting

gij = ϕ(||xj − xi||),

the system can be written in matrix form as Gw = b where
b is a vector of the true fitness values of the data-points
that have been used to train the surrogate. The matrix G
is non-singular if the points xi are distinct and the family of
functions ϕ is positive definite (which is the case for Gaussian
functions). Thus solving w = G−1b gives the weights w.

The value of the bias term w0 in Equation 3 is set to the
mean value of the known data-points, i.e., the mean of vector
b. So the predicted function value of a point which is out of
the influence of all centres, is by default set to the average
of their function values.

4.3 Interpolation
The RBFNs can be naturally generalised from continuous
spaces to any representation [13]. This can be done by con-
sidering distances defined directly on the underlying repre-
sentation. The generalisation is possible because the rep-
resentation of RBFN, their training, and the prediction do

2Swap distance is the minimum number of interchanges
needed to transform one string to the other.

not depend directly on the representation, but depend only
on the distances between solutions [13]. Once the RBF pa-
rameters are determined, the model is ready to estimate the
fitness of any unseen point. Thus, the fitness f(x) of un-
known point xq in the search space is predicted by weighted
linear combination of:

f(x) = w0 +
PN

i=1[wi ∗ ϕ(d(xq, ci))]

where, wi a vector of weights that has been calculated dur-
ing the training phase and ϕ is the kernel function which is
defined in Section 4.1. Finally, d(x, ci) is the Swap distance
between the new point xq to the training set points ci.

Traditionally, Hamming distance is used to measure the dis-
tance associate with binary strings. However, the reason
the (adjacent) swap distance is used instead of the Ham-
ming distance is that the former is more natural over binary
strings constrained to have the same number of bit set to
one (i.e., the number of issues that an agent is interested to
negotiate over them).

5. SURROGATE-ASSISTED GA
As mentioned previously, there are two aspects of this prob-
lem a) Finding optimal agenda (i.e., solve problem Q (de-
fined in Section 3.1))and b) Optimise the utility function to
calculate the profit of a particular agenda (i.e., solve problem
Pb (defined in Section 3)).

The proposed surrogate assisted GA uses two GA systems to
solve the two problems Pb and Q. We refer to this as a hyper
GA system. Firstly, we have an outer GA that searches the
space of possible C(m, g) agendas to solve Q. Each agenda
can be represented as a binary string where the ith issue
set to one. Hence, for m issues available for negotiation the
GA’s chromosomes size is equal to m. The number of ones
allowed to be in the GA’s individuals is equal to g, where g
is the number of issues that the agent choose to negotiate
on them. Thus, all individuals must have the same num-
ber of ones, because an agent is only interested in agendas
that include a specific number of issues in the negotiation
process. Secondly, we have an inner GA to solve Pb. For a
given individual in the outer GA population, the inner GA
optimises Ub. In other words, the inner GA serves as a fit-
ness evaluator for the outer GA and allows the individuals
for the outer GA to be ranked on the basis of their utili-
ties/fitness. An individual for the inner GA is a vector of m
real numbers in the interval [0, 1]. The element i represents
xb

i (where xb
i is as defined in Section 3).

Clearly, the hyper GA method is expensive as it requires
each individual in the outer GA population to invoke an in-
ner GA run to evaluate its fitness. Also, due to the noisy
nature of evaluating the population (i.e., evaluating the same
agenda twice with the inner GA may produce a slightly dif-
ferent results), and hence the noisy nature of the landscape
it is not always easy to get optimum (or more precisely near
optimum) solutions. To this end, we used the surrogate
model based on RBFNs (described in Section 4) to speed up
the outer search. The surrogate model is built solely from
available known values of the expensive objective function

evaluated on a set of solutions.3 We refer to the pair (solu-
tion, known objective function value) as data-point. Thus,
data-points form a sample of the expensive objective func-
tion and the surrogate model tries to build a function that
approximates these data-points.

The outer GA, assisted by the surrogate model, explores as
many agendas as possible and rank them based on their pre-
dicted fitness using the surrogate model. The most promis-
ing data-points (i.e., the points that have better estimated
fitness than the best known data-point) are re-examined
through the inner GA evaluation to calculate their real prof-
its, update the list of existing data-points, and update the
surrogate model (as described in Section 4.2).

Algorithm 1: Surrogate-Assisted GA search.

1 Surrogate-TrainingSet = Generate-Solution(initial-set-size);

2 Evaluate-Inner-GA(SampleDataPonits, Ub);
3 Surrogate.Train(Surrogate-TrainingSet);

4 while Expensive-evaluation-budget Not Finished do
5 Promising-Point =

Tournament-selection(Surrogate-TrainingSet);
6 Mutation(Promising-Point);
7 Surrogate.Predict(Promising-Point);

8 if Promising-Point > Best-item(Surrogate-TrainingSet)
then

9 Evaluate-Inner-GA(SampleDataPonits, Ub);
10 Surrogate-TrainingSet.add(Promising-Point);
11 Surrogate.Train(Surrogate-TrainingSet);

12 if Maximum exploration elapsed then
13 Generate a new random data-point and update

the surrogate.

The Surrogate’s search procedure is described in Algorithm
1. Generated initial solutions that forms together with their
real objective function evaluation a sample of data-points
that are used to train the surrogate model as explained in
Section 4.2 (see Lines 1-3 in Algorithm 1). Once the sur-
rogate model is trained, it becomes ready to predict fitness
of unseen points in the search space. The system applies a
simple mutation operator on a selected data-point from the
surrogate’s training set using Tournament selection (we refer
to this process as local search) (see Lines 5-6). The newly
mutated point is then evaluated using cheap surrogate eval-
uation as explained in section 4.3 to obtain its estimated
fitness (Line 7).

Note that the role of the local search procedure is to infer
the location of a promising solution of the problem using the
surrogate model, and not to directly apply it to the original
problem with the expensive objective function. Also, unlike
other surrogate models where number of explorations is lim-
ited, our model has the freedom to explore as many solutions
as it requires until it finds promising solutions. If the pre-
dicted fitness value of the mutated point is better than the

3We refer to the inner GA evaluation as expensive evaluation
because it requires a complete GA run to evaluate the fitness
of a single individual in the outer search.

best known fitness value of the known data-points, then the
model managed to extrapolate from the data (see Line 8).
Otherwise, the mutation operator has failed at suggesting
a promising solution which improves over the best known
point, and it repeats the tournament selection and muta-
tion process hoping to point out a new promising point. If
the prediction is higher than the best point in the training
set, then the point is promising and we evaluate it with the
real fitness function (Line 9). Thereafter, the new promis-
ing point with its true fitness is then added to the sample of
data points (Line 10). The resulting sample is then used to
re-train the surrogate model (Line 11). To avoid the system
from getting caught at a local optima, the surrogate training
set is updated at a uniformly generated random data-point
and evaluated with the expensive objective function. This
allows us to gather more data about under-sampled regions
of the problem and improve the accuracy of the surrogate
model to help subsequent searches on the model (Lines 12-
13).

The ‘Outer GA’, is a variant of GA adapted to operate in
conjunction with a surrogate model. Thus, the training set
is considered as the GA population. The outer search pro-
cess keeps increasing the population size (i.e., adding new
promising data-points) until the maximum number of ex-
pensive evaluations has been reached. The use of tour-
nament selection and mutation operator allows the newly
added data-points to converge toward optimum fitness.

6. EXPERIMENTAL ANALYSIS
The aim of the experiments is to evaluate the performance
of the proposed surrogate assisted GA model in a range of
settings. This requires determining how optimal the agendas
are that are generated by this model. Here, we look at opti-
mal agendas from the buyers perspective (the same analysis
applies to the seller as well). The higher the buyer’s utility
for an agenda, the better it is. In order to evaluate the sur-
rogate assisted GA model, we compare its performance with
two other models: a standard GA (i.e., without Surrogate
assistance) and random search.

The reason we included random search is that although evo-
lutionary algorithms may generally be better than random
search, they may not be so for small search spaces. It should
be noted that, for the random search, the agendas are gen-
erated randomly, but their profit is fully evaluated with the
inner GA. The following experiments were conducted for
δ = 0.5 assuming that both negotiators have complete in-
formation about the negotiation parameters.

6.1 The Setting
The setting for experiments is as shown in Table 1. Recall
that the surrogate model used RBFN to fit the available
data-points using the learning procedure presented in Sec-
tion 4.2. So the parameters were set partly by using values
commonly found in the surrogate literature and by perform-
ing a variety of preliminary experiments and selecting the
values that gave us good results while keeping the process-
ing time under control. Our aim is to find the best solution
in linear time with respect to m and g. As mentioned ear-
lier, θ is the maximum number of explorations for detecting
that no further improvement is happening and so updating
the model with a randomly generated data-point. Thus, θ is

Table 1: Surrogate Parameter Setting
Setting Value

Expensive Evaluation m × g
Initial sample size 2

Tournament selection 50% of Training Set size
θ Explorations (g × m)2

Table 2: Inner GA Parameter Setting
Setting Value

Population 1000
Generations 100

Tournament selection size 10
Mutation 100%

also related to the problem complexity with respect to the
number of possibilities to mutate data-points in the training
set. The use of tournament selection with high pressure (i.e.,
50%) allows the system to favour the best data-points in the
training set to locate new promising solutions. And training
points with inferior fitness still have a chance to contribute
in suggesting new promising points.

The model performance was evaluated for 120 independent
runs. The runs were divided into four sets. Each set involved
finding the best agenda for m = 10, 20, 30 and 40. For each
m, three different values of g, where g = m/5, m/2 and m−3
were used. For each m and g combination we performed 10
independent runs.

As for the other algorithms, to allow a fair comparison, each
of Standard GA (applied directly on the problem with the
expensive objective function) and random search received
exactly the same number of expensive evaluations and the
inner GA engine (see inner GA settings in Table 2). The
best agenda in each run is reported. In standard GA, the
GA has a population of size m and runs for g generations.
Tournament selection of size 2 and it applies mutation op-
erator. Each individual in the population invokes the inner
GA engine to evaluate its fitness.

The reason for applying 10 runs only for each m, g combina-
tion is that experiments are very time consuming as the fit-
ness function is expensive. So, we balanced the experiments
to show enough information about the model performance
while keep the whole process under control.

7. RESULTS AND ANALYSIS
Table 3 summarises the results of experiments. For each m
and g, the table illustrates the average profit over 10 inde-
pendent runs. These results show that the surrogate pro-
duced better agendas in all cases. Also, the profit difference
increased with the problem complexity. Thus, surrogate per-
forms better with complex problems than easier problems.

This is further illustrated in Table 4. This table shows the
best in all 10 runs for each m, g combination. For m = 10,
random search produced better or similar agendas relative
to the standard GA and Surrogate. This is no surprise, be-
cause standard GA can get easily trapped in local optima,
whereas the solution found by random search exhibits a large

Table 3: The average profit (over 10 runs) for each
m,g combination.
m g Surrogate Standard

GA
Random
Search

10 2 65.8 63.9 64.5
10 5 168.7 166.3 165.4
10 7 209.6 209.1 209.1
20 4 137.9 130.5 132.6
20 10 309.9 299.4 297.6
20 17 452.8 432.6 433.4
30 6 204.3 197.6 193.6
30 15 460.9 445.8 435.2
30 27 750 739.05 738.1
40 8 275.4 262.2 258.1
40 20 617.8 596.7 577.2
40 37 1070 1024.5 1023.4
*Numbers in boldface represent the highest generated profits.

Table 4: The average Improvement (over 10 runs)
for each m,g combination.

m g Average Im-
provement

Best Improve-
ment

10 2 0.54% 4.80%
10 5 0.98% 1.80%
10 7 0.05% 0.5%
20 4 3.69% 7.10%
20 10 2.39% 4.90%
20 17 4.40% 9.90%
30 6 3.17% 5.40%
30 15 3.39% 4.90%
30 27 1.40% 1.60%
40 8 4.63% 7.40%
40 20 3.42% 5.30%
40 37 4.40% 4.50%
Average 2.7% 4.8 %

variance in quality so the max best solution found can be
competitive by a “stroke of luck”, especially with small sam-
ple size and in small problems (i.e., m = 10). However,
on average (as illustrated in Tables 3 and 4) surrogate al-
ways comes in the first place while standard GA and random
search take the second and third places respectively.

The reason why the GA assisted by the surrogate is better is
that it is able to infer good promising solutions by making
rational use of the knowledge of the location and the real
fitness of previously sampled solutions.

As mentioned previously, the system has the freedom to ex-
plore as many agendas as it requires before it decides to
update the model with new promising point or alternatively
with a randomly generated point if no promising point can
be found at certain stage. Thus, if the system decides to up-
date the model at random points on a large norm, the whole
process would turn into something close to random search
(which, for small spaces, is not necessarily bad). Thus, in
Table 5, we show the number of times (in terms of the per-
centage over the total number of expensive evaluations bud-
get) the system updates the model at random points.

Table 5: The average number of random updates for
the surrogate for each m and g combination.

m g Random Updates

10 2 8.5%
10 5 13.4%
10 7 15.7%
20 4 0.12%
20 10 0.6%
20 17 0%
30 6 0%
30 15 0%
30 27 0.04%
40 8 0.03%
40 20 0%
40 37 0%
Average 3.19%

*The table shows the average over 10 runs for
each m and g combination.

As shown, when the problem space is small (e.g., m = 10)
the system injects the surrogate model with some random
samples to have a better approximation. However, for bigger
search spaces, only in rare cases the system updates the
model at random points. In fact, in 97 out of the total 120
runs the system did not add any random points to update
the surrogate. This indicates that the local search process
guided by the mutation operator and tournament selection
(see Section 5) did a good job in pointing out the most
promising solutions.

8. CONCLUSIONS
This paper proposed a hyper GA system to evolve optimal
agendas for package deal negotiation. The agenda is im-
portant in the context of negotiation because it effects the
agents’ profits. Thus, the agents want to know what agenda
will optimize their profit. But the problem of finding such
an agenda is a complex problem, especially in the context
of nonlinear utilities. To solve this problem, we presented
a hyper GA system that uses a surrogate model based on
Radial Basis Function Networks (RBFNs) to assist the GA
search. It speeds up the search by guiding the evolution in
the direction of promising agendas. The method was evalu-
ated experimentally.

Experimental results demonstrate that the proposed model
finds better agendas in comparison with a standard GA
(applied directly without surrogate assistance) and random
search. In addition, results show that the method found
better agendas in most of the cases.

This paper has made two main contributions: proposed a
new method for finding the optimal negotiation agenda, and
showed that the proposed RBFN based method can work
well in the context of a real-world problem.

This research can be extended in many different ways. In the
future we will explore ways of extending the model to those
situations where the utility functions change with time. An-
other extension would be to test the proposed system with
other optimization problems.

Acknowledgements
This research was supported by the EPSRC under grant
EP/G000980/1.

9. REFERENCES
[1] M. Bac and H. Raff. Issue-by-issue negotiations: the

role of information and time preference. Games and
Economic Behavior, 13:125–134, 1996.

[2] A. G. Bors. Introduction of the Radial Basis Function
(RBF) networks. Technical report, Department of
Computer Science, University of York, UK, 2001.

[3] S. Fatima, M. Wooldridge, and N. Jennings.
Multi-issue negotiation with deadlines. Journal of AI
Research, 27:381–417, 2006.

[4] S. S. Fatima, M. Wooldridge, and N. R. Jennings.
Approximate and online multi-issue negotiation. In
Proc. 6th Int. J. Conference on Autonomous Agents
and Multi-agent Systems, pages 947–954, 2007.

[5] S. S. Fatima, M. Wooldridge, and N. R. Jennings. On
optimal agendas for multi-issue negotiation. In Proc.
12th Int Workshop on Agent-Mediated Electronic
Commerce, pages 155–168, 2010.

[6] C. Fershtman. The importance of the agenda in
bargaining. Games and Economic Behavior,
2(3):224–238, 1990.

[7] R. Inderst. Multi-issue bargaining with endogenous
agenda. Games and Economic Behavior, 30:64–82,
2000.

[8] Y. Jin. A comprehensive survey of fitness
approximation in evolutionary computation. Soft
Comput., 9(1):3–12, 2005.

[9] D. R. Jones. A taxonomy of global optimization
methods based on response surfaces. J. of Global
Optimization, 21:345–383, December 2001.

[10] R. Keeney and H. Raiffa. Decisions with Multiple
Objectives: Preferences and Value Tradeoffs. New
York: John Wiley, 1976.

[11] Y. Lian, M. sing Liou, and A. Oyama. An enhanced
evolutionary algorithm with a surrogate model.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?
doi=10.1.1.130.4692, 2008.

[12] D. Lim, Y. Jin, Y.-S. Ong, and B. Sendhoff.
Generalizing surrogate-assisted evolutionary
computation. Evolutionary Computation, IEEE
Transactions on, 14(3):329 –355, 2010.

[13] A. Moraglio and A. Kattan. Geometric generalisation
of surrogate model based optimisation to
combinatorial spaces. In EvoCop, Lecture Notes in
Computer Science. Springer, 2011.

[14] M. J. Osborne and A. Rubinstein. A Course in Game
Theory. The MIT Press, 1994.

[15] D. G. Pruitt. Negotiation Behavior. Academic Press,
1981.

[16] T. Schelling. An essay on bargaining. American
Economic Review, 46:281–306, 1956.

