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Abstract—Researchers have classically addressed the problem
of universal compression using two approaches. The first ap-
proach has been to develop adaptive compression algorithms,
where the system changes its behaviour during the compression to
fit the encoding situation of the given data. The second approach
has been to use the composition of multiple compression algo-
rithms. Recently, however, a third approach has been adopted by
researchers in order to develop compression systems: the appli-
cation of computational intelligence paradigms. This has shown
remarkable results in the data compression domain improving the
decision making process and outperforming conventional systems
of data compression. This paper reviews some of the previous
attempts to address the universal compression problem within
conventional and computational intelligence techniques.

I. INTRODUCTION

Data compression [1], [2], [3] is one of many technologies
that enables today’s information revolution. High-quality dig-
ital TV would not be possible without data compression: one
second of video transmitted or stored without compression
using the traditional CCIR 601 standard (625 lines per frame,
720 samples per line) would need over 20 MB, i.e., 70 GB
for a two-hour movie! Also, the clarity we experience in our
phone calls and in the music produced by our MP3 players
would not be possible without data compression: 2 minutes
of a uncompressed CD quality (16 bit per sample) music
file would require more about 80 MBs. Without compression
uploading or downloading online videos and music would
consume prohibitive amounts of bandwidth and/or time. Even
faxing documents over ordinary phone lines would have not
been possible without data compression.

So, what exactly is data compression? Data compression is
the process of observing regularities in the data and trying to
eliminate them with the aim of reduce the total size of the data.
Traditional compression techniques involve analysing the data
and identifying regular patterns within them using a single
model. Such techniques are designed to capture particular
forms of regularities and, therefore, they are not practical when
dealing with board range of data types. Thus, new methods are
needed to advance the data compression domain.

Data compression is a sophisticated process and a good
universal compression algorithm would need to take intelligent
actions to allow for the encoding of different types of data.
Researchers have classically addressed the problem of uni-
versal compression using two approaches. The first approach

has been to develop adaptive compression algorithms, where
the system changes its behaviour during the compression
to fit the encoding situation of the given data. The second
approach has been to use the composition of multiple com-
pression algorithms [4]. Recently, however, a third approach
has been adopted by researchers in order to develop com-
pression systems: the application of computational intelligence
paradigms. This has shown remarkable results in the data
compression domain improving the decision making process
and outperforming conventional systems of data compression.
However, researchers are facing difficulties that are limiting
the practicality of these approaches.

This paper reviews some of the previous attempts to address
the universal compression problem within conventional and
computational intelligence techniques.

II. CONVENTIONAL UNIVERSAL DATA COMPRESSION

Most universal compression techniques collect statistical
information to identify the highest frequency patterns in the
data. In this section some of the previous attempts to address
the universal compression problem by utilising statistical ap-
proaches are reviewed.

A. Adaptive Compression Algorithms

Typically data compression algorithms have been imple-
mented through a two-pass approach. In the first pass, the
algorithm collects information regarding the data to be com-
pressed, such as the frequencies of characters or substrings.
In the second pass, the actual encoding takes place. A fixed
encoding scheme is required to ensure that the decoder is
able to retrieve the original message. This approach has been
improved through so called adaptive compression, where the
algorithm only needs one pass to compress the data [5].
The main idea of adaptive compression algorithms is that the
encoding scheme changes as the data being compressed. Thus,
the encoding of the nth symbol is based on the characteristics
of the data until position n−1 [5]. A key advantage of adaptive
compression is that it does not require the entire message to
be loaded into the memory before the compression process
can start.

Adaptive Huffman coding [6] is a statistical lossless com-
pression where the code is represented using a binary tree
structure. This algorithm gives the most frequent characters
that appear in the file to be compressed shorter codes than978-1-4244-9030-1/10/$26.00 c© 2010 IEEE



those characters which are less frequent. Top nodes in the tree
store the most frequent characters. To produce the compressed
version of a file, the algorithm simply traverses the tree
from the root node to the target character. At each step the
algorithm will encode 1 if it has moved to the left branch
and 0 otherwise. The Huffman tree creates a unique variable
length code for each character. The novelty of the Adaptive
Huffman compression is that nodes swap locations within the
tree during the compression. This allows the algorithm to
adapt its compression as the frequency of the symbols changes
throughout the file.

Adaptive Arithmetic Coding (AC) is a statistical compres-
sion that learns the distribution of the source during the com-
pression process [3]. AC has historic significance as it was the
best alternative to Huffman coding after a gap of 25 years [3].
Adaptive AC encodes the source message to variable-length
code in such a way that frequently used characters get fewer
bits than infrequently used ones. Unlike other compression
techniques which replace blocks of the data with smaller
code words, AC encodes the entire message into a single real
number. Hence, the AC is based on the mathematical fact
that the cumulative probability of a particular sequence of
characters has a unique and small subinterval within [0, 1).
The algorithm simply calculates the cumulative probability
of each symbol within the message at a time. The count for
each encountered symbol increases after it has been encoded.
Then, the cumulative count table is updated accordingly. Each
symbol leads the algorithm to a new smaller subinterval based
on its probability. The compression process starts with the
initial interval [0, 1), and keeps iterating until it reads the
entire source. The final output is a single real number selected
from the smallest identified subinterval. In the decompression
process, the algorithm receives the encoded real number as
input and starts from the initial interval. The algorithm divides
the main interval into smaller subinterval according to which
section the input falls in. The new subinterval become the
new main interval and output the corresponding symbol. This
process keeps iterating until the entire message is decoded.

Another adaptive compression is Prediction by Partial
Matching (PPM) which was proposed by Cleary and Wit-
ten in 1984 [1]. This algorithm is classified as statistical
compression. The main ideas of this algorithm are context
modelling and prediction. PPM tries to predict the probability
of a particular character being in a specific location from the
previous n symbols previously occurred. To this end, a table
of statistical information is created, which stores strings of
size o with the probabilities of their following characters. The
number of previous symbols o is called the order of the PPM
model. If the symbol to be encoded has not been previously
encountered in the context then an escape symbol is encoded
and the o is reduced. In the next iteration the algorithm uses
a table of size o − 1. This process keep iterating until the
algorithm encounters the target symbol or it concludes that
the symbol has never been seen before. In this case (i.e.,
the symbol was never seen before), the algorithm updates
the statistical tables with a new enrty (i.e., add the new

symbol with its probability and its o previous symbols). The
probability of the newly added symbol is 1/M , where M is
the size of the source alphabet [1]. The actual encoding of
the symbols is done with Arithmetic Coding compression. A
variant of the algorithm called PPMD [7] where it increments
the probability of the escape symbol every time it is used.

Cormack and Horspool introduced Dynamic Markov Com-
pression (DMC) in 1987 [5]. DMC is another statistical
compression algorithm using on context modelling and predic-
tion. Similarly to PPM, it uses Arithmetic Coding to encode
predicted symbols. The difference, however, is that the model
operates at the bit level rather than on bytes. Although this
model has similar performance to PPM it is not widely used.

Lempel and Ziv developed a universal compression system
in 1977 known as LZ77 [8]. Later, in 1978, an improved
version was presented which is referred to as LZ78 [1]. These
algorithms are classified as dictionary-based compression. The
main idea is to replace frequent substrings in the data with
references that match the data that has already have been
passed to the encoder. The encoder creates a dictionary for
the common substring in the file and uses it as reference
for the data. Both encoder and decoder must share the same
dictionary to perform the compression/decompression process.
In LZ77 a sliding window of predefined length is used to
maintain the dictionary. Data are scanned via a look-ahead
buffer and compared with the previous data within the sliding
window. Once a match is found the dictionary is updated.
LZ78 eliminated the need for a fixed size window and builds
the dictionary out of all previously seen symbols. LZ78
works very well where the frequent symbols are distributed
in isolated locations in the file. Unlike LZ77, strings in LZ78
can be longer which gives flexibility and higher performance.
The adaptability of the LZ algorithms comes from the fact
that the algorithms update the dictionary contents during the
compression process to tune the algorithm’s behaviour as the
frequency of the symbols change throughout a file.

In some sense adaptive compression algorithms represent a
form of intelligent systems that adapt their behaviour based
on the given encoding situation. The primary advantage of
adaptive compression is that it uses a single pass to compress
data. This accelerates the compression process and makes it
appealing for use in the cases where speed is favoured over
performance. The use of a single pass has the disadvantage
of sacrificing the ability to see ahead in the file to determine
future fluctuations which may contain valuable information
for the encoding scheme. In adaptive compression once the
algorithm makes the decision to encode the data in a particular
way it will not be able to change it, even if the algorithm
later learns a better way of encoding this information. Another
problem with adaptive compression algorithms is that they
are sensitive only to changes in relation to the particular
redundancy type which they are specialised to detect, hence,
they are not able to exploit different forms of redundancy [4].
Also, because they learn the alphabetic distribution during
the compression time, they cannot handle drastic changes in
the files streams as, for example, is the case with changes



from text to picture. Consequently, adaptive schemes are not
recommended for heterogeneous files where multiple types of
data are stored in a single file and their constituent parts have
different degrees of compressibility.

B. Composite Compression Algorithms

In many real world applications, it is ineffective to use a
single compression model to adapt the regularities of the data.
Therefore, a practical approach is to apply a composite model,
which can be defined as a combination of several models
where only one model can be active at any given time [1].
This is another approach to develop universal compression
algorithms and to achieve higher compression. It has been
reported that this approach show superior performance to
standard compression algorithms. A successful composition of
compression algorithms can be achieved in two ways. Firstly,
by running a number of compression algorithms successively.
Secondly, by combining a number of simple compression
algorithms and heuristically selecting them where they are
expected to perform best.

A well-known composite compression system is Bzip2.
Bzip2 is a free, open-source, composite and lossless com-
pression algorithm developed in 1996 [9]. It has been widely
used in many commercial compression applications, such
as WinZip [10]. In this algorithm, the data are compressed
through several compression and transformation techniques in
a particular order. The reverse order is used in the decom-
pression process. Bzip2 compresses files using the Burrows-
Wheeler transform and the Huffman coding. This technique
has been found to be better than LZ77 and LZ78 [9]. Bzip2 is
known for being slow in the compression process and much
faster in decompression.

Katz in [11] proposed an algorithm that combines LZ77
with Huffman coding as an improvement for the PKZIP
archiving tool. This algorithm is referred to as Deflate. In the
original implementation of LZ77, the algorithm tries to match
strings within a sliding window with a look-ahead buffer.
Matched strings are used to build a dictionary. Each repeated
string is replaced each with a triplet (pointer 1, length and
next symbol). The next symbol element is needed in case there
is no exact match in the dictionary (e.g., William and Will).
In Deflate a variant of LZ77 is used, which eliminates the
third element and encodes a pair (pointer, length). Unmatched
characters are written in the compressed stream [2]. In the
original implementation of the Deflate algorithm, compressed
data consisted of a sequence of blocks corresponding to
successive blocks of input data. These blocks can be of
different lengths based on the various prefix codes used and
the memory available to the encoder. The algorithm has three
options for each input block: i) Apply no compression, which
is used if the data is already compressed, ii) Compress with
fixed Huffman code and iii) Compress with dynamic Huffman
code. Each uncompressed block is individually compressed
using the previously described modification of LZ77 and then

1pointer is an index in the dictionary

Huffman coding. Thus, each block is composed of two parts:
i) a Huffman tree that describe the data and ii) the com-
pressed data itself. Deflate has been widely implemented in
many commercial compression applications, such as gzip, the
HTTP protocol, the PPP compression protocol, PNG (Portable
Network Graphics) and Adobe’s PDF (Portable Document
File) [2].

Another composite compression system is the Lempel-Ziv
Markov-chain Algorithm (LZMA) [2]. LZMA uses a similar
approach to Deflate. The difference is that it uses range
encoding instead of Huffman coding (the range encoder is
an integer-based version of Arithmetic Coding) [2]. This
enhances the compression performance, but at the expense
of increasing the encoder’s complexity. In LZMA, the input
stream is divided into blocks, each block describing either a
single byte, or an LZ77 sequence with its length and distance.

The main disadvantage of standard composite compression
algorithms is that they are unreliable when dealing with
heterogeneous files, i.e., files that are composed of multiple
data types such as archive files (e.g., ZIP and TAR). This
is because most standard composite compression schemes
follow deterministic procedures that involve applying several
compression models in a particular order. These procedures
are selected based on the designer experience or experimental
evidence which demonstrated their superior performance under
certain conditions. Whilst these methods have proven to be
successful in achieving high compression ratios, the use of
deterministic steps to perform compression entails the disad-
vantage of making the encoding decision fixed and unable to
deal with unpredictable types of data.

Another approach to developing composite compression
system is allowing the system to heuristically select and
apply compression algorithms where they are expected to
perform best. This idea has been explored by Hsu in [4].
Hsu’s system segmented the data into blocks of a fixed length
(5 KB) and then compressed each block individually with
the best compression algorithm. Four compression algorithms
were used in Hsu’s system, namely, Arithmetic Coding, Run-
length encoding, LZW and JPEG for image compression. The
system works in two phases. In the first phase, the blocks are
scanned to determine the compressibility and the contents of
each block. The compressibility of the blocks is calculated
by measuring three different quantitative metrics: alphabetic
distribution, average run length and string repetition ratio. The
system considers the blocks already compressed if these mea-
sures were under a predefined threshold. Consequently, already
compressed blocks are skipped. The files contents are deter-
mined using a modified Unix file command. This command is
able to classify ten different types of data. The modified file
command works by examining the first, middle and last (if it
exists) 512 bytes and thereafter comparing their patterns with
collections of known patterns from the Unix operating system.
In the second phase, the actual compression takes place, where
the system passes the blocks to the appropriate compression
model based on the gathered information from the first phase.
Experimentation with 20 heterogeneous test files revealed that



the proposed system was able to outperform other commercial
compression systems with 16% saving on average. The main
disadvantage of Hus’s system is that the size of the blocks is
fixed to 5KB, which limits the algorithm’s ability to identify
the true boundaries of heterogeneous fragments within the
data. Moreover, the modified Unix command used detects ten
file types only and is not reliable enough to guarantee that the
blocks are passed to the optimal compression algorithm. This
is because the system assumes that one particular compression
algorithm is suitable for all files of a particular type. This
assumption, however, is flawed as the compressibility of the
data depends on the forms of regularities within the data and
whether the compression algorithm is designed to capture
them. These regularities are not necessarily to be correlated
with a particular file type. Thus, at least in principle, two text
files may be better compressed with two different compression
algorithms depending on their contents.

III. DATA COMPRESSION WITH COMPUTATIONAL
INTELLIGENCE PARADIGMS

Computational Intelligence (CI) researchers attempt to
understand and simulate intelligent behaviour through the
modelling of natural intelligence, such as evolution, insects
swarms, neural systems and immune systems. This has re-
sulted in a variety of paradigms including Artificial Immune
Systems, Neural Networks, Particle Swarm Optimisation, Ant
Colony, Fuzzy systems and Genetic Algorithms [12]. The main
problems solved by CI paradigms include but are not limited to
optimisation, classification, prediction and pattern recognition.
Researchers have achieved significant successes in solving real
world problems using these techniques.

Due to the great potential of current CI paradigms in
solving complex problems, researchers have tended to apply
some of these techniques to develop new intelligent data
compression systems. However, thus far, only a little has been
done to address this problem. Current research has focused
mainly on investigating the applications of neural networks
and genetic algorithms in order to explore the future of data
compression. Applications of neural networks and genetic
algorithms illustrate that CI paradigms in this area may be
ready to play a significant role in assisting and complementing
traditional techniques. In this section, we will review some
of the previous attempts to use neural networks and genetic
algorithms techniques to address this problem.

A. Neural Networks Applications in Data Compression

Artificial Neural Networks (ANN) have the potential to
extend data compression algorithms beyond the standard meth-
ods of detecting regularities within the data. Although, they
have often been avoided because they considered too slow for
practical use. Nevertheless, neural networks have been applied
to data compression problems. Existing research on neural
network applications in compression can be summarised into
three categories: transform coding, vector quantization, and
predictive coding [13].

1) Code Transformation: In the first category (code trans-
formation), the neural network is asked to identity a mapping
between input and output which is then used for compression.
Neural networks fit well with image compression because they
have the ability to process input patterns to produce simpler
patterns [14]. The network is composed of three layers; input,
hidden and output [14]. Here, the desired output is to be
identical to the input itself. Compression is achieved when
the number of neurons in the hidden layer is smaller than the
dimensionality of the input and output layers [14]. The input
images are divided into blocks of 4 × 4, 8 × 8 or 16 × 16
pixels [14]. The size of the input layer is equal to the number
of pixels in the blocks. The neural network is trained to
scale an input of N dimensions into narrower outlets of M
dimensions at the hidden layer. It then produces the same input
at the output layer. The quality of the network is calculated
by measuring the difference between input and output. The
idea is in the activiation of the neurons in the hidden layer
will be saved or transmitted as the compressed version of
the image. The original image will be reconstructed using the
output layer to achieve the decompression process. However,
it should be noticed that the activities of the hidden layer are
real numbers between -1 and 1 which will most likely require
greater storage space than the image itself. Therefore, the
outputs of the hidden layer are encoded (quantised) to reduce
the size of the data. This approach has been implemented
in [15], where experimentation with three black and white
images was conducted to prove its practicality.

This approach has been improved by Hassoun in [16] who
proposed an alternating Hebbian algorithm in order to improve
the training approach for the decompression part in the net-
work. Also, the learning rule was extended to capture nonlinear
relationships among the component in the training patterns.
In [14] a cumulative distribution function was estimated for
the images and used to map images pixels. Experimentation
showed that this improves the compression ratio with back-
propagation networks and accelerates convergence.

Namphol et al. [17] proposed a hierarchical architecture
in order to improve the basic back-propagation network.
In this work, two more hidden layers were added to the
overall network. The three hidden layers are referred to as
the combiner layer, compressor layer and decombiner layer
respectively. All hidden layers are fully connected. The aim
is to exploit the correlation between pixels via the combiner
layer and the correlation between blocks of pixels via the
decombiner layer. Thus, compression is achieved by dividing
the target image into a number of blocks and each block
is further divided into smaller blocks. The proposed system
used nested training algorithm to improve the training time.
Experimentation with computer generated images and real
world images demonstrated the stability and generlisation of
the system, however, the compression rate achieved by the
system was not significant (1 bit/pixel) to that of standard
data compression techniques.

An adaptive back-propagation neural network has been
proposed to overcome the limitations in the basic back-



propagation in [18]. The basic idea is that different neural
networks have different performance and only certain types
of networks work best with a particular set of images. As a
result, a group of neural networks with an increasing number
of hidden layers in the range (hmin, hmax) are used in a
single system. The aim is to match the input image blocks
with the most appropriate network based on their complexity.
Several training schemes have been proposed to train the new
adaptive architecture, including parallel training, serial train-
ing, activity-based training and direction-based training [18].

2) Vector Quantisation: In the second category (vector
quantisation), neural networks are used to encode the input
image into a set of codewords. The input image is divided
into blocks and then fed into the network as input. The input
layer is K dimensional and M < K output neurons are
designed to calculate the vector quantisation codebook [18].
Each neuron represents one codeword. The learning algorithm
aims to adjust the weights of the network in such a way as
to associate the ith neuron from the input layer with the cth

codeword [18]. Around this basic architecture, many learning
algorithms have been developed to optimise the learning pro-
cess, such as competitive learning [19], [20], fuzzy competitive
learning [21], and predictive vector quantisation [22].

Laskaris and Fotopoulos in [23] proposed a modified
learning scheme to improve codebook design, which describes
the mapping from the input data to their compressed rep-
resentation. In this work, the sequential presentation of the
training patterns is controlled via an external, user-defined
criterion. The proposed modification considers blocks with
spatial structure (e.g., well-formed edges) more important than
homogenous regions. Therefore, they require more information
in the codebook in order to represent them. The roulette-
wheel [24] sampling technique (borrowed from the genetic
algorithm literature) has been applied to favour some of the
training samples. A technique was also used to maintain
the diversity of the training samples. The proposed training
scheme was found to be specialised in the representation of
edges while the standard training scheme is better tailored
to luminance variations. Comparisons with the standard train-
ing procedure based on the quality of reconstructed image
showed that roulette-wheel-based training achieved significant
improvements in codebook design.

3) Predictive Coding: In the third category (predictive
coding), neural networks were used to improve existing com-
pression technology. Schmidhuber and Heil [25] combined
3-layered predictive neural networks with statistical coding
schemes to compress text. In this work, neural networks
trained by back propagation were used to approximate char-
acters probabilities when given n previous characters. The
predictor input comes from a time-window of size t that scans
the data with steps of size p. The outputs of the network are
then fed to standard statistical coding algorithms to encode
the data. Two different coding methods were introduced in
conjunction with the predictor network: Huffman coding and
Arithmetic Coding. In [26], the same authors have extended
their work and introduced a third method. In this work,

prediction networks have been used in a similar manner as in
PPM (see section II-A ). Thus, a time-window corresponding
to the predictor input scans the data sequentially. The output
produced by the prediction network is compared with the
actual data. Wrong predictions are stored in a separated file
(Meta file) to be used in the decoding process. Then, Huffman
coding is applied to the Meta file in order to reduce the total
size of the compressed data. The decoding process starts from
n default characters to be fed to the predictor network. The
predictor will sequentially predict the next character. Infor-
mation in the Meta file is used to correct wrong predictions
and restore the original file without loss. Experimentation with
these three methods revealed that they outperformed LZW and
Huffman coding. The major disadvantage, however, is that the
algorithm was too slow for practical use. Training on 10KB
to 20KB consumed 3 days of computational time.

Mahoney [27] proposed a faster text compression method
based on neural networks that could compress the same
amount of data in about 2 seconds. In this work, a 2-layers
predictive neural network that predicts one bit at a time was
used. The proposed predictive network learns and predicts
in a single pass. Experimentation with the proposed method
showed better compression ratios, but slower than LZW.
However, results were almost identical to PPM both in terms
of speed and achieved compression ratios.

B. Genetic Algorithms Applications in Data Compression

Data compression algorithms often require a large search
space to be explored in order to find some forms of redundancy
within the data or to select an optimal encoding scheme
based on the given files. Evolutionary Algorithms (EAs) can
be used as a search engine for this purpose or even as a
method to evolve new compression algorithms. Nevertheless,
data compression is a highly sophisticated procedure and
evolving a data compression algorithm is not an easy task.
Yet, few attempts have been made to use EAs to evolve
data compression models. Existing research mainly focuses on
investigating the applications of Genetic Algorithm (GA) and
Genetic Programming (GP) in order to explore their potentials
in solving data compression problems. As we will see, the
good compression ratios achieved by early attempt with these
techniques in comparison to other conventional compression
algorithms show the importance of further exploring the ap-
plications of EAs in the field of data compression.

Koza [28] was the first to use GP to perform compression.
He considered, in particular, the lossy compression of images.
The idea was to treat an image as a function of two variables
(the row and column of each pixel) and to use GP to evolve
a function that matches the original as closely as possible.
Small, 30× 30 pixel, images were treated as symbolic regres-
sion problems with just the basic arithmetic operators in the
functions set. The evolved function can be then considered
as a lossy compressed version of the image. The technique,
which was termed programmatic compression, was tested just
on one small synthetic image with good success.



Programmatic compression was further developed and ap-
plied to realistic data (images and sounds) by Nordin and
Banzhaf [29]. In this research the authors presented the target
data as a continuous sequence of numbers (fitness cases) and
asked GP to evolve a program that could fit these data. A
problem, however, appears with very large fitness cases (which
is the case with most images) where GP may fail to find
a solution of acceptable quality. As a result, an alternative
approach was presented where the fitness cases were divided
into equally sized subsets and solutions were evolved for each
of them individually. The main disadvantage of the system is
that the time required to compress a picture was up to 10 days.

In [30] the use of programmatic compression was extended
from images to natural videos. A program was evolved that
generates intermediate frames of a video sequence. A se-
quence of gray-scale frames was considered. Each frame is
composed of a series of transformed regions from adjacent
frames. The possible motions within a single frame can be
expressed as a combination of scaling, shearing, rotating
and change in luminance. The function set of the system
was composed of one function (Transform) that encapsulates
all these operations. The Transform’s output is controlled
by several parameters that set the object to be moved, the
start location, the end location, and the luminance change.
Programs are evaluated by measuring the difference between
the approximated frames and the target frames. If a program
achieves satisfactory approximation in one frame the system
uses it for the following frame, utilising the fact that subse-
quent frames usually share similar characteristics. The results
were encouraging as a good approximation to frames was
achieved. Naturally, although a significant improvement in
compression was achieved, programmatic compression was
very slow in comparison with other methods, the time needed
for compression being measured in hours or even days. In [31]
an optimal linear predictive technique was proposed. Thanks
to the use of a simpler fitness function, acceleration in GP
image compression was achieved.

GAs have been used for image compression. In [32] Mitra
et al. proposed a new GA-based method for fractal image
compression. The proposed method utilises the GA for finding
self similarities in the given image. Then, the system divides
the given images into blocks and tries to find functions that
approximate the target block. Here, the squared mean error
was used as fitness function to evaluate the quality of the
individuals.

Iterated Functions Systems (IFS) are important in the do-
main of fractals and the fractal compression algorithms. [33]
and [34] used GP to solve the inverse problem of identifying
a mixed IFS whose attractor is a specific binary image of
interest. The evolved program can be taken to represent the
original image. In principle this can be further compressed.
The technique is lossy, since the reverse problem can rarely
be solved exactly. No practical application or compression
ratio results were reported in [33] and [34]. Using similar
principles, Sarafoulous [35] used GP to evolve affine IFSs
whose attractors represent a binary image containing a square

(which was compressed exactly) and one containing fern
which was achieved with some error in the finer details).

The application of GAs to accelerate fractal coding time
has been explored in several works. In [36], [37] a GA has
been used to compress fractal images by finding Local Iterated
Functions Systems that encode a single image and reducing
the time needed to 30% compared with other methods. In [38]
a GA implementation to speed up the compression without
significant loss of the image quality was proposed. The GA
searches the optimal parameters for domain block coordinates
and isometric flip. The luminance and contrast parameters are
computed with standard equations. In this implementation,
chromosomes include 5 genes, from which only 3 genes
are submitted for genetic modification and the other 2 are
computed with a standard equation. This was found to improve
compression time, in the reported experiments. The time
needed to perform compression ranged from 9 seconds to 23
minutes depending on the settings used for the system.

A first lossless compression technique was reported in [39],
where GP was used to evolve non-linear predictors for images.
These are used to predict the gray level a pixel will take based
on the gray values of a subset of its neighbours (those that
have already been computed in a row-by-row and column-
by-column scan of the image). The terminals used for the GP
system were the values of four neighbouring pixels, constants,
arithmetic operators, and Min/Max functions. The prediction
errors together with the model’s description represent a com-
pressed version of the image. These were further compressed
using Huffman encoding. The system required several hours
to compress a single image. Results on five gray images from
the NASA Galileo Mission database were very promising,
with GP compression outperforming some of the best human-
designed lossless compression algorithms.

Text compression via text substitution has been investigated
in several applications using both GA and GP. Ucoluk and
Toroslu [40] used a GA to evolve a dictionary of syllables
for the Huffman coding. The GA was used to search for a
combination of the alphabet in such a way as to improve
the Huffman coding performance. The chromosomes of each
individual represent a selected combination of a predefined
set of text. Individuals were evaluated by measuring the
entropy of the encoded text. Experimentation with Turkish text
corpora revealed that the achieved compression ratios when
using evolved dictionaries were superior to those provided
by standard methods. This work has been extended in [41]
with Czech and English text where the approach has been
tested with the LZW algorithm. Also, in [42] the same
method has been tested, where GA was used to construct
dictionaries for text substitution. Experiments demonstrated
that GA always outperforms standard text dictionary-based
compression methods.

Zaki and Sayed [43] used GP to improve the standard
Huffman coding. The proposed system utilised GP to find the
most repetitive substrings within the text to be compressed.
In this work, the search population was a collection of nodes
that describe different substrings. Then, the Huffman tree is



generated to encode high frequency substrings with shorter
references. For the proposed representation, the authors used
specialised search operators. Reported results demonstrated
that the Huffman tree generated with this system was able to
achieve higher compression than the standard Huffman coding
algorithm in some cases by small margins. However, due to
various restrictions on the system, standard Huffman coding
was not significantly improved.

In [44] Oroumchian et al. proposed an online text compres-
sion system for web application based on a GA. The system
utilises a GA to find the most repetitive N-grams within the
text and replaces them with shorter references. N-gram tables
are stored to be used in the decompression process. In the
first step, the system calculates the frequencies of 2-, 3-, 4-
and 5- grams. The aim is to allow the GA to find the best
combination of N-grams replacements in such a way as to
achieve a high compression ratio while minimising the total
number of N-grams used. The compression process is carried
out on the HTTP server side. The decompression process is
performed during the loading of the web page. The proposed
method was tested on Persian text. The best result reported by
the proposed system was 52.26%. However, no comparisons
with other compression techniques were reported.

In many compression algorithms some form of pre-
processing or transformation of the original data is performed
before compression. This often improves compression rates.
In [45] Parent and Nowe evolved pre-processors for lossless
compression using GP. The objective of the pre-processor
was to reduce losslessly the entropy in the original image.
The function set of the GP system was divided into two
categories. Functions that read the input data into a buffer and
functions that process the data read from it. All used operators
are reversible in order to guarantee applicability for lossless
compression. In tests with five images from the Canterbury
Corpus [46] GP was successful in significantly reducing image
entropy. As verified via the application of Bzip2, the resulting
images were markedly easier to compress.

Many conventional compression systems have a number
of parameters, e.g., window size, prediction order, dictionary
limits, etc. Such parameters typically influence the compres-
sion performance. The ideal setting for these parameter is
depending on the structure of the file to be compressed in
most cases. For this purpose, GAs and GP have been used to
optimise the parameters of existing compression systems (e.g.,
as previously reviewed in [40], [41], [43]). Recently, Burtscher
and Ratanaworabha [47] proposed a system based on a GA to
tune the parameters of the FPC compression [48]. FPC divides
the data to be compressed into blocks and processes each block
individually. The GA was used to initialise the population of
settings (i.e., each individual represents a different configura-
tion). Each individual in the first population applies its settings
to the FPC and compresses the first block. The designed fitness
function favoured individuals that yield highest compression
ratios. The next block is compressed with the new generation.
Thus, the size of the blocks is directly related to the number
of generations. Experimentation with several versions of the

FPC algorithm revealed that evolution was able to find optimal
settings for each block, which led the algorithm to achieve
higher compression ratios in comparison with the standard
versions of the algorithm. Typically, this evolutionary process
slows the compression phase significantly.

Klappenecker [49] used GP to find optimal parameters to
optimise the performance of conventional wavelet compression
schemes, where internal nodes represented conjugate quadrate
filters and leaves represented quantisers. The aim was to min-
imise the rate-distortion while maintaining high compression
ratios. Results on a small set of real world images were
impressive, with the GP compression outperforming JPEG at
all compression ratios.

Wavelets are frequently used in lossy image and signal
compression. In [50] Grasemann and Miikkulainen used a co-
evolutionary GA to find wavelets that are specifically adapted
to fingerprint images. The evolved wavelets were compared
with human designed wavelets that were used by the FBI
to compress fingerprint images and standard JPEG2000. In
this work, the GA initialises several populations of lifting
steps 2 in parallel and then randomly combined to form
new wavelets. Each sub-population is evolved in isolation.
At each generation, the best individuals are selected from
each population to join the new wavelet. Results showed
that the GA was able to outperform its competitors in terms
of compressed image quality by a factor of 15% to 20%.
The authors reported that evolution required approximately 45
minutes to complete the learning process.

Feiel and Ramakrishnan [52] proposed a new vector quan-
tisation scheme using a GA (GAVQ) to optimise the compres-
sion of coloured images. In this work, the GA was used to
find optimal, or more precisely near optimal codebooks that
describe the mapping from the input data to their compressed
version. Experiments showed that the results obtained are
better than the LBG algorithm by of 5% to 25%.

Keong et al. [42] used GA to optimise the a Generalised
Lloyd Algorithm (GLA). 3 GLA receives the input vectors
and initialises the codebook randomly, such that it maps the
input sequence to a compressed digital sequence. GLA refines
the codebook though an iterative process in order to reduce
the average distortion. The authors introduced a Genetic GLA
(GGLA), which uses a GA to find optimal codebooks. Each
chromosome in the GA population represents a codebook and
the set of genes corresponds to the codewords. Simulations
with the three versions of the proposed system have been
conducted with first-order Gaussian-Markov processes. This
showed that GGLAs outperformed GLA in most cases.

Intel patented a method in [53] to compress microcode
based on GAs. The proposed method utilises a GA to find
common patterns in the microcode’s bit strings and store them
in a table with a unique ID for each pattern. To achieve

2The lifting scheme introduced by Sweldens in [51] offers an effective
way to construct complementary filter pairs. A finite filter called a Lifting
step and can be used to construct a new filter pair. Thus, new wavelets can
be constructed starting from a known complementary filter pair.

3GLA is a lossy image compression method based on vector quantisation.



this task, the system represents the microcode’s bit strings
in a matrix format and groups similar columns of microcode
storage into clusters to minimise the total size.

Evolvable hardware (EHW) has been explored in the practi-
cal applications of data compression. In [54], [55] Salami et al.
applied EHW to data compression applications. In this work, a
new type of hardware evolution was proposed which is referred
to as function-level EHW [56]. EHW was used as a predictive
function for image compression. In this approach, the images
to be compressed are divided into blocks and then EHW finds a
function for each block. Thus, by finding a different predictive
function for each region of the image EHW applies an adaptive
predictive technique for the image. The system can be treated
as lossy if it ignores errors, or lossless if it tracked the errors
for the decompression process. Sekanina [57] extended this
work and proposed a technique to allow balancing between
achieved compression ratio and image quality. Four threshold
values were added to the terminal set (randomly initialised).
Each value corresponds to a quarter of the image. The system
transfers any particular pixel (represented as position and
value) to the compressed image if its prediction error is
greater than the relevant threshold. Thus, transferred pixels are
ignored during the decompression process. Threshold values
change during evolution. The system only allows the transfer
of pixels up to a maximum limit. To maintain a balance
between compression and quality, the number of transferred
pixels was treated as a penalty value in the fitness calcula-
tions. Experimentation with the proposed technique revealed
that the quality of the images increase with the size of the
population. However, JPEG still outperformed EHW in terms
of compression achieved ratio. Furthermore, the time needed
to complete the evolution process was considerably larger than
for standard image compression methods.

A GA system for the optimisation of combined fuzzy image
compression and decompression was introduced in [58]. Here,
an image is divided into squares and a fuzzy system replaces
the whole square with a single pixel of particular colour
decided according to its neighbours. The square is a fuzzy
set defined through a membership function that describes to
what degree each neighbour pixel belong to the square. Thus,
the content of the square is mapped into a single pixel in
the compressed image. The reverse process is used in the
decompression phase. The pixels of the compressed squares
are restored by calculating their values with the appropriate
membership function according to the value of the single pixel
in the relevant square. Generally, some pixels may belong to
more than one square with different degrees depending on
their position. A GA has been used to optimise the parameters
of the membership functions for both the compression and
the decompression process. The Mean Square Error (MSE)
between original and compressed images was used to guide
evolution. Experimentation demonstrated that the system has
good generalisation capabilities when tested with images out-
side of the training set. However, one of the main problems
with restored images is the blurring of contours.

C. The GP-zip Family

Recently, Kattan and Poli proposed a series of intelligent
universal compression systems (the GP-zip family) in [59],
[60], [61], [62]. The main idea of which is to evolve programs
that attempt to identify what is the best way of applying
different compression algorithms to different parts of a data file
so as to best match the nature of such data. He presented four
members of the GP-zip family, namely, GP-zip, GP-zip*, GP-
zip2 and GP-zip3. Each new version addresses the limitations
of previous systems and improves upon them.

With GP-zip the aim was to understand the benefits and
limitation of combining existing lossless compression algo-
rithms in a way that ensures the best possible match between
the algorithm being used and the type of data it is applied to.
To explore this idea GP-zip implemented a simple decision
making mechanism. GP-zip uses a linear GP representation
for its individuals. The system divides the given data file
into segments of a certain length and asks GP to identify
the best possible compression technique for each segment.
GP-zip was executed multiple times until it could find the
best size for the segments. The function set of GP-zip is
composed of primitives that are themselves basic compression
and transformation algorithms. These algorithms are treated
as black boxes that receive input and return output, although
some algorithms may use another learning mechanisms and/or
multiple layer of compressions themselves.

In GP-zip*, the second member of the family, a new
method for determining the length of the blocks was presented,
which completely removes the need of a staged search for an
acceptable fixed length typical of GP-zip. GP-zip*, also, uses a
linear GP representation for its individuals. The system evolves
the length of the blocks within each run, rather than use the
staged evolutionary search, possibly involving many GP runs,
of GP-zip. Each individual is divided onto blocks of different
sizes to each of which a compression and/or transformation
algorithm is allocated. The system changes the blocks’ sizes
and their allocated algorithms via new intelligent crossover
and mutation operators which targeted hotspots in the selected
individuals. The intelligence of these operators comes from the
fact that, instead of acting on random blocks in the parents,
they select blocks with the lowest compression ratio, which
arguably are the most promising places where variations can
be beneficial. This approach was found to achieve higher
compression ratios and to require less computational effort
than its predecessor.

Both GP-zip and GP-zip* outperformed state-of-the-art
compression systems in terms of achieved compression ratios.
However, the compression process is very slow and impractical
for large files. This is a common problem for compression
systems based on CI paradigm (see section III). In GP-zip2,
the system aimed at addressing this particular weakness. GP-
zip2 uses a tree-like representation for its individuals. The
system treats the data to be compressed as digital signals
represented using 8-bits per sample. GP evolves programs
with multiple components. One component analyses statistical



features extracted from the raw byte series and divides the data
to be compressed into blocks. These blocks are projected onto
a two-dimensional Euclidean space via two further (evolved)
program components. K-means clustering is then applied to
group similar data blocks into clusters. Each cluster is labelled
with the optimal compression algorithm for its member blocks.
After evolution, evolved programs can be used to compress un-
seen data. Experimental results showed that GP-zip2 compares
very well with established compression algorithms in terms
of the compression ratios achieved. Also, once compression
programs are evolved, they can be used over and over again
to perform compression. This compression process is much
faster than other evolutionary compression techniques. These
features make GP-zip2 appealing for practical use.

The major disadvantage of GP-zip2 that it requires on
average 6.4 hours to evolve a practical solution. This is
largely due to the costly fitness evaluation adopted in GP-zip2
which requires compressing data fragments using multiple
compression algorithms. GP-zip3 tried to solve this particular
problem in the system by using a novel fitness evaluation
strategy. More specifically, GP-zip3 evolves and then uses
decision trees to predict the performance of GP individuals
without requiring them to be used to compress the training
data. As shown in a variety of experiments, this speeds
up evolution in GP-zip3 considerably over GP-zip2 while
achieving similar compression results, thereby significantly
broadening the scope of application of the approach. The
major disadvantage of GP-zip3 is that its fitness evaluation
depends on evolved estimation functions. Thus, the user must
spend extra time evolving accurate estimation functions for
each of the compression algorithms available to GP-zip3. This,
however, needs to be done only once and then it can be reused
many times.

In this research the author have produced systems that
outperform most other compression algorithms. They come
top of all compression algorithms tested on heterogeneous files
and are never too far behind the best with other types of data.
Reported results shows that GP-zip family evolved solutions
are human-competitive based on Koza’s 8 criteria for human-
competitiveness [63].

IV. CONCLUSION

The main limitations of the previous techniques are twofold:
practicality and generality. The implementation of CI tech-
niques in the data compression domain has proven to smarten
compression programs by allowing them to make educated
decisions with regard to how to encode the data. These have
often consequently outperformed conventional compression
schemes. Naturally, this gain in performance comes at a
fairly high cost in termes of increased program complexity
and intensive load of computations. This makes CI-based
compression algorithms slow and inapplicable for practical
use in most cases. Nevertheless, some applications in the CI
literature have been reported to be suitable for practical use
(e.g, [14], [27], [40], [41], [44]). Yet, all of these applications
are tailored to handle a single type of data, such as wavelets,

images, text, ...etc, or are designed for a few specific classes
of data. Hence, the second limitation is that none of the
previously reviewed CI-based methods is a reliable universal
compression technique.

There is an urgent need to have smart compression systems
that can deal effectively with any regular data type and can tai-
lor different encoding techniques based on the given situation.
While GP-zip systems are perhaps present few steps toward
a practical solution, they still suffer from some disadvantages
as reported by the authors. More research in this area is still
required to develop intelligent reliable compression systems.
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2002), Erick Cantú-Paz, Ed., New York, NY, July 2002, pp. 301–307,
AAAI.

[31] Jingsong He, Xufa Wang, Min Zhang, Jiying Wang, and Qiansheng
Fang, “New research on scalability of lossless image compression by
GP engine”, in Proceedings of the 2005 NASA/DoD Conference on
Evolvable Hardware, Jason Lohn, David Gwaltney, Gregory Hornby,
Ricardo Zebulum, Didier Keymeulen, and Adrian Stoica, Eds., Wash-
ington, DC, USA, 29 June-1 July 2005, pp. 160–164, IEEE Press.

[32] Suman K. Mitra, C. A. Murthy, and Malay Kumar Kundu, “Technique
for fractal image compression using genetic algorithm.”, IEEE Trans-
actions on Image Processing, vol. 7, no. 4, pp. 586–593, 1998.

[33] Evelyne Lutton, Jacques Levy-Vehel, Guillaume Cretin, Philippe Gle-
varec, and Cidric Roll, “Mixed IFS: Resolution of the inverse problem
using genetic programming”, Complex Systems, vol. 9, pp. 375–398,
1995.

[34] Evelyne Lutton, Jacques Levy-Vehel, Guillaume Cretin, Philippe Gle-
varec, and Cidric Roll, “Mixed IFS: Resolution of the inverse problem
using genetic programming”, Research Report No 2631, Inria, 1995.

[35] Anargyros Sarafopoulos, “Automatic generation of affine IFS and
strongly typed genetic programming”, in Genetic Programming, Pro-
ceedings of EuroGP’99, Riccardo Poli, Peter Nordin, William B. Lang-
don, and Terence C. Fogarty, Eds., Goteborg, Sweden, 26-27 May 1999,
vol. 1598 of LNCS, pp. 149–160, Springer-Verlag.

[36] Lucia Vences and Isaac Rudomin, “Fractal compression of single images
and image sequences using genetic algorithms”, The Eurographics
Association, 1994.

[37] L. Vences and I. Rudomin, “Genetic algorithms for fractal image and
image sequence compression”, Proceedings Computacion Visual, pp.
35–44, 1997.

[38] Faraoun Kamel Mohamed and BOUKELIF Aoued, “Optimization of
fractal image compression based on genetic algorithms”, in 2nd Interna-
tional Symposium on Communications, Control and Signal Processing,
Marrakesh, Marocco, 2006.

[39] Alex Fukunaga and Andre Stechert, “Evolving nonlinear predictive mod-
els for lossless image compression with genetic programming”, in Ge-
netic Programming 1998: Proceedings of the Third Annual Conference,
John R. Koza, Wolfgang Banzhaf, Kumar Chellapilla, Kalyanmoy Deb,
Marco Dorigo, David B. Fogel, Max H. Garzon, David E. Goldberg,
Hitoshi Iba, and Rick Riolo, Eds., University of Wisconsin, Madison,
Wisconsin, USA, 22-25 July 1998, pp. 95–102, Morgan Kaufmann.

[40] Gktrk oluk and I. Hakki Toroslu, “A genetic algorithm approach for
verification of the syllable-based text compression technique”, Journal
of Information Science, vol. 23, no. 5, pp. 365, 1997.

[41] Tomas Kuthan and Jan Lansky, “Genetic algorithms in syllable-based
text compression”, in DATESO, Jaroslav Pokorný, Václav Snásel, and
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