
Genetic Programming Lifelong Multitasking Evolution:
LLGP-Tasking

Ahmed Kattan and Faiyaz Doctor

Abstract— We present a Lifelong Multi-Tasking learning al-
gorithm based on Genetic Programming referred to as“LLGP-
Tasking”. This paper extends previously published work ”GP-
Tasking” [8], evolving a population of GP trees using a multi-
faceted strategy. In GP-Tasking, each individual is trained with
multiple fitness functions (where each function represents one
task and has different training/testing sets). Empirical evidence
demonstrated that the quality of evolved solutions is comparable
to standard GP achieving significantly faster computational
time while maintaining smaller evolved population sizes. In
this work, we improved GP-Tasking allowing the system to
accumulate knowledge and use them not only in multitasking,
but also with different problems to mimic lifelong learning.
We further introduced a new crossover mechanism to transfer
useful knowledge across different tasks. Moreover, we introduced
new population initialisation approach to accumulate knowledge
across different domains. Experimental results of the new
LLGP-Tasking demonstrate superiority of evolved solutions over
standard GP and it maintained same search speed produced by
its predecessor (i.e., GP-Tasking).

I. INTRODUCTION

The terms Transfer Learning, Multi-tasking, and Lifelong
learning are often closely interchanged in the machine learn-
ing literature. Transfer learning, is when a learner applies
solutions or settings (i.e., relevant knowledge) from previous
learning experiences to solve new tasks [11]. Usually the
transfer occurs between a source domain and a target domain.
Many papers, in the literature, illustrate transfer learning to
solve a particular instance at hand without regarding how
knowledge from different domains is accumulated [3]. Also,
most algorithms apply transfer learning unidirectional. It is
one way ticket, where knowledge is transferred from the
source domain to the target domain [3].

In multi-tasking, a single learner receives multiple indepen-
dent problems (which we call tasks) as input, to then solve
them all simultaneously [11]. Most papers, in the literature,
present a form of transfer learning within multi-tasking algo-
rithms. Thus, capitalising on the potential of knowledge con-
tained in one task that can be fully exploited by others during
the concurrent learning process [16]. The rationale is to ex-
plore joint areas in the search space of all tasks by exploiting
their informational and structural relatedness. According to
Wei et. al. in [16], multi-tasking population based algorithms
can be split into two categories of implementation: A) single-
population and B) multi-populations. For single-population
algorithms, some considerations are needed to ensure the pop-
ulation treats multiple tasks simultaneously. The concept of
factorial ranking is introduced to allow comparison between
each individual’s performance across the different tasks [4].
Also, a measure of individuals’ performance biases (called

Ahmed Kattan is with Ministry of Municipal, Rural Affairs, and Housing,
Saudi Arabia, email: akattan@momrah.gov.sa

Faiyaz Doctor is with School of Computer Science and Electronic Engi-
neering, University of Essex, Essex, UK, email: fdocto@essex.ac.uk

the skill factor) is used to determine the best task on which
the individual can perform [4]. Multi-population algorithm
implementations exhibit different challenges, however. They
need a mechanism to allow selection of a complementary
source task for a given target task, forming a task pair
for the subsequent knowledge transfer. Furthermore, multi-
population algorithms, need to be aware of negative transfer
which will naturally slow down evolution by moving useless
blocks of genetic materials. In addition, since each task is
resolved by a unique population, each population has the
option between two types of operations, self evolution and
cross-task evolution.

The concept of lifelong machine learning was proposed
around 1995 [3]. There are four main branches of research
raised. Namely, Lifelong Supervised Learning, Lifelong Un-
supervised Learning, Lifelong Semi-Supervised Learning and
Lifelong Reinforcement Learning. Lifelong learning is aimed
at accumulating knowledge learned in previous tasks, and
uses this to help future learning steps. The main difference
between lifelong learning algorithms and the majority of
traditional machine learning algorithms, is that the later learn
to solve problems in isolation (i.e., for each new problem, the
algorithm will run from scratch) while the former are trying
to store knowledge in a central database to be exploited when
solving new problems.

Despite the continued raise of new complex dynamic prob-
lems, where the external environment is not under control,
few works have explored the concept of multi-task with
lifelong learning approaches in single algorithm [12]. Many
real word scenarios require multi-tasking with the lifelong
experience. For example, consider the usage of cloud servers
as computational resource where users send their tasks to be
processed [10]. Here, instead of designing a different learner
for each task, a single learner can be materialised for all tasks
(or at least for tasks that belong to same category). Equally,
if we consider a hive of robots distributed at departure and
arrival gates of a busy airport. The robots task might be
to greet people in their native languages as they arrive or
leave to board their flight. These robots are connected to
a central system that continuously learns face recognition.
You can imagine the situation where the system exhibit its
multi-tasking ability to respond to robots’ API calls and
at the same time learns to recognise new unseen faces of
animals and babies apart from regular passengers. Note in
this example, there are multiple tasks which need to be solved
simultaneously at a given time h. The system will sequentially
receive new batches of tasks at time h + 1. For example,
in time h1 the system may receives 100 images from all
robots to be processed, and in time h2 the system may receive
200 images to be processed. Imagine the system was never
exposed to an image of new born baby before time h1. Now,
the system managed to learnt features that map to new born

babies. In time h2, if this knowledge was not stored and the
system faced another new born then it will have to learn it
again from scratch. Here lies the importance of accumulating
knowledge.

All these examples, among others, necessitate lifelong
multi-tasking learners. In this work, we present an attempt
to combine abilities of multi-tasking algorithms together with
lifelong learning features. We propose LLGP-Tasking which
is a GP based algorithm that is able to solve multiple tasks
simultaneously and accumulate knowledge to be exploited
with other unseen domains. LLGP-Tasking is an extension
of GP-Tasking which was published in [8]. The proposed
algorithm uses a single population to solve multiple problems
simultaneously. LLGP-Tasking evolves the population using
a multifaceted strategy. Each individual is evaluated with
multiple fitness functions (where fitness function represents
one task and has its own training and testing sets). To this
end, the same individual can be viewed as a solution to several
problems/tasks. To further explain the meaning of a multi-
faceted strategy, imagine that you view the GP population
with several VR glasses. Each time you wear a VR glass,
one fitness function will be activated and you view a different
distribution of the search space. Hence, you can look at the
same tree (phenotype) with different fitness values (genotype)
dependent on which problem/task you view. To explore the
search space, LLGP-Tasking uses standard mutation operator
and across tasks crossover where the system forces the
exchange of genetic materials between tasks. The system uses
fitness ranking to distinguish individuals’ performances and
measures ranking similarities of individuals across different
tasks to estimate overlap between genotype spaces. Identified
points that overlap between different geneotype spaces are
considered as potentials of constructive knowledge transfer
(more in Section IV). The evolutionary process runs for
a fixed number of generations and the best individual in
each generation is tested with an independent validation set.
The individual that yielded best fitness on the validation set
is selected as the best evolved solution. The system stores
these solutions and use them as seeds for the new initial
population for the next tasks batch 1. The overall process
of LLGP-Tasking is illustrated in figure 1. Note that LLGP-
Tasking makes no assumptions about the tasks relatedness.
The system can handle heterogeneous tasks from different
domains. Moreover, thanks to the multifaceted strategy, the
number of tasks is irrelevant to population size (further details
in Section IV).

This paper is organised as follows; Section II presents
related work. Section III present a quick review of GP-Tasking
algorithm. Section IV delves into the details of the proposed
algorithm. Sections V and VI discuss the experimental set-
tings and results. Finally, this paper conclude in Section VII
with final remarks and suggestions of future work.

II. RELATED WORK

The following subsections, will shed light on most recent
literature in Evolutionary Multitasking and Lifelong Learning,

1The assumption of LLGP-Tasking that it receives multiple tasks in a
batch then it solves them simultaneously, and keep sequentially receiving
new batches of new tasks. In a similar fashion to the robots hive example.

T1

T6

T2

T5
T4

T3

Tn

T1

T6

T2

T5
T4

T3

Tn

T1

T6

T2

T5
T4

T3

Tn

T1

T6

T2

T5
T4

T3

Tn

T1

T6

T2

T5
T4

T3

Tn

Time + 2 Time + 1 Time NOW Time -1 Time -2

LLGP-Tasking

Knowledge Base

Store best solutions

Generate Initial population

Ta
sk

s
B

at
ch

e
s

Fig. 1. LLGP-Tasking design. The system receives batches of tasks
sequentially. Each batch has several tasks where LLGP-Tasking solves them
simultaneously and accumulate knowledge to be used for the next batch. Note
that tasks’ domains within same batch and across different batches may be
heterogeneous.

subsequently. We will further illustrate the importance of the
interrelatedness of these fields.

A. Evolutionary Multi-Tasking

The term evolutionary multitasking was coined, as a new
paradigm in the field of optimisation and evolutionary com-
putation. In [4] and [10] authors proposed a methodology
(referred to as MFEA) that was designed to use vectorial
chromosome representation (i.e., as in standard Genetic Al-
gorithm). Their work was inspired by bio-cultural models
of multi-factorial inheritance, which explain the transmission
of complex developmental traits to offspring through the
interactions of genetic and cultural factors. In their paper,
authors presented the model as an optimiser for several
single-objective tasks simultaneously. To achieve this, a uni-
fied search space representation was used where the length
or dimensionality of chromosomes was set to be equal to
maxjDj and Dj is the length of chromosomes for the jth

task. This unified representation encourages implicit transfer
of useful genetic material between different tasks. Each
individual is initially evaluated against all tasks and is set
to a skill factor parameter that defines which tasks among all
tasks an individual gives the best fitness value to. To save
computational costs, this skill factor is passed to offspring
so they get evaluated with one task only. Experiments with
several optimisation tasks reveals performance correlation
with the level of intersection in the solution spaces between
different tasks.

An extension of MFEA is presented in [5], where the
main emphasis is to solve multi-objectives optimisation of
tasks simultaneously. The proposed algorithm is referred to
as MO-MFEA. Experimental results when compared against
standard NSGA-II show multitasking MFEA performs better
when the search spaces of tasks are highly correlated. The
more intersection that exists between solution spaces the
more useful are the genetic building blocks to be exchanged
between tasks in a unified search space representation of
MFEA.

Bi et. al. [2] proposed a multitask GP approach to image
feature learning for classification. the authors used a multi-
tree representation to exchange knowledge across two tasks.
Individuals are presented as triplets where two trees are

designated to solve each corresponding task and one tree
called the common tree is designed to find the solution
to both tasks. The search process starts with co-evolution
process. Three populations are generated to search for the
best triplet. Each task specific population is driven based
on classification accuracy as the fitness measure. The third
common tree population is guided using the average of
classification accuracy for both tasks. Also, they used tree size
as plenty to encourage evolution finds smaller common trees.
The best evolved solution, in each generation, are used to
form the evolve triplets in the form of solution trees specific to
each task and a common tree representing the solution to both
tasks. The features extracted by these two trees are passed
to an SVM classifier. The idea of multi-tree representation
is based on the fundamental assumption that two similar or
related image classification tasks may have/share common
feature representation.

One main challenge raised with sharing knowledge across
tasks during in evolutionary process is the negative transfer.
Negative transfer occurs when knowledge exchanged between
tasks actually lead to producing worse models. Lim et. al.
[9] proposed a domain adaptation approach in the context of
evolutionary optimisation, inducing positive transfers even in
scenarios of source-target domain mismatch. The proposed
approach establish a probabilistic formulation of domain
adaptation, by which source and/or target tasks can be mapped
to a common solution representation space in which their
discrepancy is reduced.

Kattan et. al. in [7] proposed a GP framework to auto-
matically split a single problem into multiple sub-problems
and solve all sub-problems simultaneously. The proposed
framework works in two levels. In the first level, training cases
are split into clusters based on their statistical properties using
multi-tree representation of individuals. Each GP individual
is represented using a pair of trees. The pair of trees receive
fitness cases and convert them into coordinates in a 2D
Euclidean space. K-mean clustering is used to then project
coordinates into clusters. The second level solves each cluster
as an independent problem. While the authors did not attribute
this contribution to the multi-tasking research, the proposed
framework can still be seen as a multitasking algorithm in the
sense that it solves multiple problems in a single run.

Wojciech et. al. in [6] the authors showed a proof of
concept for code reuse in GP to solve different tasks si-
multaneously. GP evolves, in parallel, separate populations
designated to particular tasks. A standard crossover was used
to swap sub-trees between different tasks (referred to as cross-
breeding). To allow for a unified search space in cases where
terminal sets were different between tasks a relabeling mech-
anism was proposed where some terminals were replaced if
they were not being used in the target task. Experiments
showed that when using 3 classes of Boolean problems, a
higher performance than standard GP was achieved in some
cases. The authors did not test performance in relation to the
level of overlap in solution spaces of target tasks.

B. Lifelong Evolutionary Learning

The concept of lifelong machine learning was proposed
around 1995 [3]. Approaches to lifelong learning in GP can be
categorised as external, internal and cultural [1]. The external

approaches try to improve search using local search methods
such as Hill Climbing to continuously explore neighborhoods
of local optima. On the other hand, internal approaches, work
with individuals that incorporate an internal mechanism of
learning by design, for example, when the individuals are
surrogate models. The third approach uses a notion of culture
to share the learning across the population through some
form of implicit communication. To this extent, Azad et.
al. [1] introduced a Chameleon GP system to augment GP
with lifetime learning by adding a simple local search based
on restricted single node mutation. In addition, the authors
opposed a new implementation approach to reduce local
search cost. The proposed implementation only evaluates
branches that were exposed to mutation and accumulates
results at root note without the need to evaluate the whole
tree.

Ruvolo et. al. [15] proposed an Efficient Lifelong Learning
Algorithm (ELLA) that incorporates aspects of both transfer
and multi-task learning. ELLA learns and maintains a library
of latent model components as a shared basis for all task
models. As each new task arrives, ELLA transfers knowledge
through the shared basis to learn the new model, and refines
the basis with knowledge from the new task. The shared basis
can be any model such as Linear Regression or Logistic
Regression. Later, same author in [14] explored the use
of active curriculum selection to improve the scalability of
lifelong learning. The whole idea is based on the assumption
that a lifelong learner can choose the next task to learn from a
pool of candidate tasks. The author proposed an improvement
to ELLA in [15]. Two main approaches for choosing the next
task to learn are: A) maximise expected information gain
(Information Maximisation), and B) minimise the worse case
fit of a learner L to each task (Diversity methods).

III. GP-TASKING

GP-Tasking is designed to solve multiple tasks using a
single population. Similar to canonical GP [13], GP-Tasking
works in four stages. Namely,

1) Population initialisation
2) Evaluation
3) Selection
4) Reproduction
The main differences in GP-Tasking reside in the evaluation

and selection stages.
To formalise the process of GP-Tasking, let the set of

independent tasks defined as T = {t1, t2, ...tn} where ∀ti ∈
T : ti = Fi(Xi, yi). Here, Fi, Xi, and yi are fitness function,
input vectors, and outputs for the ith tasks, respectively.
The inputs X ∈ IRd. The algorithm starts by initialising a
population of trees P = {I1, ..., Ip} using ramp half-and-half
[13] where ∀Ia ∈ P : Ia = {F1(X1, y1), ..., Fn(Xn, yn)}.
Thus, individuals are evaluated against all tasks and assigned
a vector of fitness values. This allows the same individual to
be multifaceted and fall in different locations in each genotype
space corresponding to each task in T .

Note that GP-Tasking uses a single population to represent
multiple genotype search spaces. The relationship between
these search spaces is not necessarily known in advance.

Now, once population is initialised and evaluated, where
each individual is evaluated with each task in the set T ,

GP-Tasking prepares new offspring population to join gen-
eration g + 1. The selection process works in two steps.
First, it randomly selects a task ti ∈ T called first t.
Secondly, it selects an individual Ii using standard tournament
selection. Once an individual is selected, GP-Tasking will
decide whether to reproduce this selected individual using
a crossover or mutation operator. For crossover, the system
picks up a second tasks, second t. To do this, few tasks are
randomly selected into a tournament pool, and the task with
highest probability of constructive crossover is selected. Then,
a second individual Ij is picked up using standard tournament
selection to join crossover. Crossover operator allows the
system to exchange genetic material from different tasks. As
a trial to reduce the effect of negative transfer, GP-Tasking
keeps track of constructive crossover operators for each pair
of tasks in a probability Matrix called PM of size n × n,
where n is number of tasks. Initially, PM is set to zeros.

The advantage of GP-Tasking are that there is no need
to have prior knowledge about the tasks’ domains or their
interdependencies before hand. Another advantage of GP-
Tasking is that selection is performed independently for each
task and we don’t need a scaler function for fitness values
of different tasks. GP-Tasking unifies population phenotype
space while using different interpretations that yield different
genotype spaces. This unification can be viewed as a higher
order abstraction space. Any intersection between different
genotype spaces is deemed significant opportunity to ex-
change knowledge between corresponding phenotype spaces
to improve search performance.

It is important to highlight that during the search process
GP-Tasking stores the best evolved individuals for each task.
Thus, it returns multiple solutions. Namely, one solution for
each tasks.

We believe that GP-Tasking suffered from negative knowl-
edge transfer. Therefore, it did not manage to significantly
outperform standard GP in terms of performance of evolved
solutions. Note that crossover was biased based on PM to
pick up a pair of tasks. This approach dose not account
for the dynamic nature of population. Since the evolutionary
process is shifting the population toward a local optima, the
intersection between two tasks’ search space will differ based
on population distribution in the fitness space at a given time.
Thus, what seems to be constructive at generation g is not
necessarily to be same in g + 1. We mitigate this problem
in the new LLGP-Tasking by introducing an approach to
estimate the intersection between genotype spaces (more
details in section IV).

IV. LLGP-TASKING

The proposed LLGP-Tasking follows exactly the steps de-
fined by its predecessor in [8], as presented in section III, with
one main improvement in the knowledge exchange approach.
The knowledge exchange is mainly exhibited by selection
and crossover operator. Further, LLGP-Tasking stores the best
evolved solutions in a knowledge base (see figure 1) for next
batch of tasks.

To formalise LLGP-Tasking, let the set of tasks T at a
given time h be Th = {(t1, ..tn)0, (t1, ..tn)1, ..., (t1, ..tn)h},
where each (ti)h has a domain D. Note that the set D is
not necessarily unique. Hence, any task may or may not

Individual I

Fitness landscape of Task 2Fitness landscape of Task 1

Fig. 2. Example of an individual have different fitness rank in different
tasks. The distance between ranks of the same individual quantify whether
it relatively occupy similar raking in different tasks or not.

have a similar domain to other tasks. In each time h, LLGP-
Tasking will try to find ˆFt(Xi, yi) ≈ Ft(Xi, yi)∀ti ∈ Th

given that for each (ti)h there is a function that receives input
vector X ∈ IRd and returns output y 2. Moreover, the set
Sh = {sit} is the set of best evolved solutions for tasks in
time h and KB = {S0, ..Sh} is the knowledge base of all
evolved solutions for all tasks. The best solution is defined as
follows. Each generation produces a best evolved solution that
is tested against independent validation set. The best solution
that yield best result across all generations is considered the
best evolved solution.

LLGP-Tasking starts by initialising a population of trees
using traditional ramp half-and-half [13] and evaluate each
individual against a fitness function that correspond each task
lit = |ŷ−y|

r where r is the size of the training set. Hence,
each individual Ii ∈ P is associated with a vector L = {lti}
to quantify the value of the fitness functions for each task.
Then the selection process and reproduction operators starts
to generate generation g + 1, and so on.

Note that the multi-tasking process of LLGP-Tasking main-
tains same advantages of the multifaceted strategy as in its
predecessor. Thus, it searches for solutions using one pop-
ulation (i.e., phenotype). However, there are multiple fitness
space (i.e.,geneotype) translations correspond to each given
task 3. The use of one population opens the opportunity to
exchange useful knowledge among the phenotypic representa-
tions to exhibit better exploration in all geneotype translations.
One main risk, though, is that despite embedded knowledge
being share among tasks exhibited by the one population
model, there is still a high possibility to produce a negative
knowledge transfer for other tasks when we crossover two
highly fit parents trees of one task. In order to mitigate this
particular challenge, any knowledge transfer approach has to
balance knowledge transfer between any task pairs to avoid
negatively effecting the search of other tasks. We believe this
was the main reason that GP-Tasking did not outperform
standard GP 4. In LLGP-Tasking we account for this and
introduced an enhanced crossover operator.

2The output y = [0, 1] for classification tasks and a real number in R1

for regression tasks.
3Since each task has a fitness function then the same tree in the population

will have different fitness values.
4Note that the main contribution of GP-Tasking was its faster execution

time, while solution performance to standard GP was comparable.

Once individuals are evaluated on all tasks, LLGP-Tasking
ranks individuals (for each task) from 1 to p. The best fitness
value gets a rank of 1 while the worst fitness value gets a
rank of p (note that p is the population size). Thus, each
individual Ii ∈ P is associated with a rank vector such that
Ii = {rt1, rt2, .., rtn}. See figure 2 to visualise the concept of
single individual is associated with different ranks in different
tasks. To further explain why we used fitness ranking in
LLGP-Tasking, suppose if an individual 5 Ix is ranked as the
1st in two tasks, say t1 and t2. This indicate that there exists
one point the phenotype space that has the most superior
fitness in both tasks at generation g for both tasks. Hence,
Ix represents overlapping point between tasks t1 and t2. To
calculate the overlap distance of single individual in different
geneotype spaces we use the following equation:

OverlapDis(Ii, ta, tb) = |rankta − ranktb | (1)

To this end, Ix overlap distance is 0 in the tasks pair
(t1, t2). Now, we bias the crossover to be between individuals
with low overlap distance and highly ranked to maximise the
chances of positive knowledge transfer between tasks. To this
end, we can define average rank is:

RankAvg(Ii, ta, tb) =
(rankta + ranktb)

2
(2)

Hence, if there exist two individuals Ix and Iy having a
low overlap distance between any task pair (ti, tj) and both
individuals are highly ranked in both tasks, then it is deemed
as a good opportunity to exchange knowledge between two
tasks in this particular instance. Later, in section VI, we will
see that experimental evidence reveals that the number of
constructive crossover produced by LLGP-Tasking is much
higher than standard crossover.

LLGP-Tasking performs selection and crossover based on
equation 2. The selection process picks up two tasks ran-
domly. Then it ranks fitness and calculates the rank average
for all individuals in matrix M .

M =

RankAvg(I0, ti, tj) .. RankAvg(I0, ti, tj)
...

RankAvg(Ip, ti, tj) .. RankAvg(Ip, ti, tj)

(3)

where i and j are the two randomly chosen tasks. Based on
matrix M , LLGP-Tasking randomly adds some individuals in
a competitive tournament pool where the comparison is based
on the lowest rank average. This approach allows LLGP-
Tasking bias its crossover (i.e., knowledge transfer) between
individuals that are closely positioned in similar areas in the
geneotype spaces. For the mutation operator, the selection
process picks a tasks randomly and a standard tournament
selection is used to pick up an individual.

Remember that we store all the best evolved solutions
in KB to be used in the population initialisation at time
h+ 1. There are many options to seed the initial population
with existing solutions. For example, we could add the
best solutions as is or we could mutate them and seed the
population with several variants of them. Further, we could
measure the rank distance between a random initial population

5since GP populations represented as trees, we use the term tree and
individuals interchangeably.

TABLE I
SYMBOLIC REGRESSION PROBLEMS

Test Function Range of training set
T0 5x+ 2 [0, 5]

T1 (x− 1)2(x+ 3)3 [0, 5]

T2
√
x4 + x3 + x2 + x [0, 5]

T3
√
x3 + x2 + x [0, 5]

T4 x3 + x2 + x [0, 5]
T5 sin(x) + cos(x) [0, 5]
T6 x3 − x2 [0, 5]

T7 tan(x)
sin(x)

[0, 5]

T8 x
√
x [0, 5]

T9 x2+x
x3+x2+x

[0, 5]

TABLE II
LLGP-TASKING AND SGP SETTINGS

Parameter Value
Population size 100

Max Generations 100
Tournament size 5

Population Initialisation Ramp half-and-half
Function set +,−,×, /, x2, x3, constants [0, 5]

and solutions in KB to favour certain individuals as seeds.
We explored all these options in preliminary experiments and
found the best and simplest way is to randomly top up the
initial population with small seed (e.g., 5% to 10%) while the
remaining population is generated using standard ramp half-
and-half. We noticed if we add more than 10% the evolution
sometimes stagnates from the beginning.

V. EXPERIMENTS SETTINGS

The aim of our experiments are to validate the superiority
of LLGP-Tasking. As such we aimed to answer the following
questions and thus our experiments was setup to specifically
to obtain logical answers to the following questions:

1) Dose the proposed knowledge transfer among tasks
actually improve the search?

2) Would the proposed knowledge transfer work better
than standard crossover operations?

3) Dose LLGP-Tasking still maintain the speed of its
predecessor despite the extra overhead calculations of
equation 2?

4) Can the proposed knowledge base mechanism actually
improve the results for the tasks in time h+ 1?

To answer the above questions, we tested LLGP-Tasking
against standard GP (hereafter SGP) in several symbolic
regression problems. Particularly, we exposed the system to
10 regression problems/tasks in 2 batches. In each batch
LLGP-Tasking solves 5 tasks simultaneously. Table I lists
the experimental problems. Tasks T0 to T4 where solved
in the first batch and tasks T5 to T9 where solved in the
second batch. 6 To compare the results, SGP was run multiple
independent times to solve each task separately. The settings
used for both systems are presented in Table II.

We tested LLGP-Tasking with four different settings.
Namely, we explored the performance under 0% crossover
(i.e., no knowledge exchange between tasks), 5%, 10%, and

6The denominator of the test function for T7 and T9 is not allowed to
be 0.

TABLE III
LLGP-TASKING VARIATIONS

Batch LLGP Variants
First Crossover: 0%,5%,10%,15%

Second

With Seed Initial Population from KB
Crossover: 0%,5%,10%,15%

Without Seed Initial Population from KB
Crossover: 0%,5%,10%,15%

15% crossover rates. In the second batch, we explored LLGP-
Tasking performance with and without the use of seeds from
KB. Thus, in the second batch there are 8 variants of the
systems. Table III summaries all variations of LLGP-Tasking
we tested in our experiments.

For each batch, we ran 20 independent runs for all systems.
Note that LLGP-Tasking runs to solve all tasks in the batch
simultaneously while SGP initiates multiple instances to
solve each task in isolation. Particularly, in each run SGP
ran 5 isolated instances to solve the given tasks. The total
experimental evaluation of all systems included 4, 600 runs
and 46, 000, 000 tree evaluations.

VI. RESULTS

Lets start looking the first batch in terms of evolved
solutions. Table IV illustrates the results of the first batch
in which LLGP-Tasking solved tasks T0 to T4. The table
summaries 20 runs for LLGP-Tasking variation and 20 runs
for SGP in each task. Numbers show the mean absolute
error of the best evolved solution. To further simplify the
interpretation of the results, we ranked the results from 1,
the lowest to 5, the highest. It is clear that for tasks 0 and
3, LLGP-Tasking with 15% crossover achieved best results.
For task 1, LLGP-Tasking with 5% was the best. For tasks
2 and 4, LLGP-Tasking with 0% crossover (i.e.,without any
knowledge transfer) was the best (which indicate the different
nature of the task than other tasks). Also, note that all
LLGP-Tasking variations evolved better solutions, by a large
margins, than SGP in most tasks in terms of mean, min, and
median. This is a remarkable performance. Remember that
GP-Tasking did not manage to outperform SGP in most tasks
and even in the cases that it managed to evolve better solutions
the difference were not significant.

We compare the populations’ bloat, in the first batch.
Figure 3, visualises the bloat in all systems. Each line is
averaged over 20 independent runs, generation-by-generation.
Notice the significant difference between all version of LLGP-
Tasking compared to SGP. The average tree size started at
13 nodes in the first generations for all systems. with SGP
the population size reached 341 nodes by the last generation
while it grow only to 167 with LLGP-Tasking. This is almost
48% lower than SGP.

Further, we compare the execution time. Since we only
need one instance of LLGP-Tasking runs to solve all 5 tasks
as compared to needing 5 isolated SGP runs to solve the same
tasks, we compared execution time of LLGP-Tasking against
the sum of 5 SGP runs. This comparison was repeated 20
times and summarised in Table VII. Note that the comparison
is still fair as the number of fitness evaluations is similar in
both systems. Remember that LLGP-Tasking evaluates each
individual against all loss functions for all tasks. It is clear
that the average of all versions of LLGP-Tasking is 56%

TABLE IV
RESULTS COMPARISON FOR TASKS IN BATCH 1

Min (Rank) Mean (Rank) Median (Rank) Overall Rank
LLGP 0% T0 479.02 (5) 502.38 (4) 498.99 (4) 4.3
LLGP 5% T0 471.22 (3) 494.21 (3) 487.73 (2) 2.7
LLGP 10% T0 467.84 (2) 492.42 (2) 491.20 (3) 2.3
LLGP 15% T0 463.50 (1) 486.43 (1) 487.46 (1) 1.0
SGP T0 478.29 (4) 545.66 (5) 511.64 (5) 4.7
LLGP 0% T1 679.52 (2) 800.39 (4) 794.18 (4) 3.3
LLGP 5% T1 680.24 (3) 761.04 (1) 767.82 (2) 2.0
LLGP 10% T1 670.20 (1) 769.35 (3) 771.66 (3) 2.3
LLGP 15% T1 690.07 (5) 763.02 (2) 750.19 (1) 2.7
SGP T1 681.61 (4) 812.66 (5) 814.34 (5) 4.7
LLGP 0% T2 314.53 (1) 338.43 (3) 335.51 (2) 2.0
LLGP 5% T2 318.02 (2) 337.83 (2) 335.70 (3) 2.3
LLGP 10% T2 324.73 (5) 335.62 (1) 332.85 (1) 2.3
LLGP 15% T2 319.96 (3) 339.28 (4) 337.01 (4) 3.7
SGP T2 323.64 (4) 352.28 (5) 350.36 (5) 4.7
LLGP 0% T3 147.35 (2) 152.73 (3) 151.91 (2) 2.3
LLGP 5% T3 148.45 (4) 152.74 (4) 152.66 (4) 4.0
LLGP 10% T3 146.65 (1) 151.96 (2) 152.18 (3) 2.0
LLGP 15% T3 147.48 (3) 151.81 (1) 151.83 (1) 1.7
SGP T 3 149.99 (5) 157.44 (5) 154.63 (5) 5.0
LLGP 0% T4 1577.64 (1) 1638.34 (1) 1634.75 (1) 1.0
LLGP 5% T4 1605.13 (4) 1660.26 (4) 1656.03 (4) 4.0
LLGP 10% T4 1603.18 (3) 1648.60 (2) 1648.38 (2) 2.3
LLGP 15% T4 1588.35 (2) 1655.08 (3) 1658.15 (5) 3.3
SGP T4 1612.60 (5) 1721.58 (5) 1651.08 (3) 4.3
Note: Lowest overall ranks are marked as bold numbers.

TABLE V
EXECUTION TIME COMPARISON FOR TASKS IN BATCH 1

LLGP 0% LLGP 5% LLGP 10% LLGP 15% SGP
Min 188 213 233 215 376
Mean 259 272.05 272.5 265.95 429.75
Median 254 254 269 267 431

Fig. 3. Population Bloat. Numbers are averaged over 20 independent runs
for each system

faster than SGP. Also, there is no surprise that LLGP-Tasking
with 0% crossover is the fastest version (since the cost of
calculating the pair distance is not present).

To verify the effectiveness of the proposed crossover (i.e.,
knowledge transfer approach) we compare the number of
constructive crossover operator between LLGP-Tasking and
SGP (see figure 4). To assure fair comparison, we used
5% crossover rate in both systems. We defined constructive
crossover as any crossover producing offspring with a fitness
better than that of both parents in at least of the selected
tasks. Note how LLGP-Tasking produce higher constructive
crossovers and maintain same trend across all generations
while in SGP it is clear that the rate of constructive crossover
is much lower and declines slowly as evolution progress.

If we look at the new problems in the second batch,
presented in table VI. For tasks 5 and 7 the LLGP-Tasking
with a 10% crossover rate was ranked the best among all

Fig. 4. Comparison between LLGP5% and SGP of on task 4 number of
Constructive crossover generation-by-generation. Numbers are averaged over
20 independent runs for each system

systems. For task 6, LLGP-Tasking with 5% crossover was
the best ranked. with tasks 8 and 9, the LLGP-Tasking with a
15% crossover rate received the best ranking. In all tasks,
SGP did not outperform most versions of LLGP-Tasking.
LLGP-Tasking exhibited same outstanding behavior for bloat,
execution speed, and constructive crossover in the second
batch.

The second batch started with knowledge carried out from
first batch. In order to evaluate the usefulness of the trans-
ferred knowledge that was stored in the set KB (see figure
1), we tested two versions of each LLGP variant. One version
seeded the initial population with 5% individuals randomly
selected from KB and another version without any use of
KB. We noticed that in several tasks, there existed common
knowledge from the previous batch that was useful. This is
evident in figure 5, where the fitness of the best individual is
seen to be lower when the initial population seeded from KB.
Obviously, this allows the evolution to start the search from
superior locations in the search space. To further compare
the difference between the two versions, we compared the
distribution of the 20 runs in terms of min, mean, and median
for all batch 2 tasks (i.e., T5 to T9), and ranked the best value
as 1 and the worst as 2. Then we calculated the average rank
for each version. This comparison is presented in Table VIII.
It is clear that LLGP-Tasking with KB transfer is better in
most cases in terms of performance of evolved solutions. We
believe there is room for improvement in transferring useful
knowledge from the set KB. This will be a point of future
research.

Recall the main research questions we presented in the
beginning of section V. For the first and second questions,
we have shown that the proposed approach for knowledge
transfer among tasks has improved the search which is evident
by higher rates of constructive crossover and better solutions
evolved by LLGP-Tasking as compared to SGP. For the third
question, we showed that LLGP-Tasking is shown to be
58% faster than SGP. Finally for the last question, we can
show that the use of KB has a direct effect on performance,
such that when common knowledge of prior task solutions is
utilised to initialise the population in LLGP-Tasking, we see
an improved performance in terms of generating individuals
with the better fitness as compared to SGP.

TABLE VI
RESULTS COMPARISON FOR TASKS IN BATCH 2

Min (Rank) Mean (Rank) Median (Rank) Overall Rank
LLGP 0% T5 7.94 (4) 8.11 (4) 8.07 (3) 3.7
LLGP 5% T5 7.92 (2) 8.08 (2) 8.02 (1) 1.7
LLGP 10% T5 7.89 (1) 8.04 (1) 8.04 (2) 1.3
LLGP 15% T5 7.94 (3) 8.09 (3) 8.11 (4) 3.3
SGP T5 7.97 (5) 8.18 (5) 8.13 (5) 5.0
LLGP 0% T6 676.53 (2) 715.00 (1) 708.09 (3) 2.0
LLGP 5% T6 675.74 (1) 718.66 (3) 698.03 (1) 1.7
LLGP 10% T6 686.56 (5) 726.87 (4) 717.93 (4) 4.3
LLGP 15% T6 677.86 (3) 717.66 (2) 700.57 (2) 2.3
SGP T6 679.06 (4) 731.95 (5) 732.20 (5) 4.7
LLGP 0% T7 25.76 (1) 171.20 (3) 178.74 (4) 2.7
LLGP 5% T7 127.75 (5) 195.66 (5) 176.27 (3) 4.3
LLGP 10% T7 122.25 (3) 168.34 (1) 171.89 (1) 1.7
LLGP 15% T7 123.07 (4) 175.77 (4) 181.52 (5) 4.3
SGP T7 91.25 (2) 169.69 (2) 172.47 (2) 2.0
LLGP 0% T8 126.91 (4) 133.46 (2) 133.38 (2) 2.7
LLGP 5% T8 124.68 (2) 134.91 (4) 134.03 (3) 3.0
LLGP 10% T8 125.87 (3) 134.20 (3) 134.91 (4) 3.3
LLGP 15% T8 116.36 (1) 131.53 (1) 133.34 (1) 1.0
SGP T8 130.31 (5) 138.04 (5) 135.61 (5) 5.0
LLGP 0% T9 12.01 (3) 12.68 (4) 12.61 (5) 4.0
LLGP 5% T9 12.01 (2) 12.54 (2) 12.58 (3) 2.3
LLGP 10% T9 12.19 (4) 12.63 (3) 12.50 (1) 2.7
LLGP 15% T9 11.91 (1) 12.52 (1) 12.51 (2) 1.3
SGP T9 12.24 (5) 12.78 (5) 12.60 (4) 4.7
Note: Lowest overall ranks are marked as bold numbers.

TABLE VII
EXECUTION TIME COMPARISON FOR TASKS IN BATCH 2

LLGP 0% LLGP 5% LLGP 10% LLGP 15% SGP
Min 173 174 155 149 337
Mean 221.15 209.45 220.05 219.15 421.95
Median 218 204 216 206 423

Fig. 5. Best Fitness in Generation. Numbers are averaged over 20
independent runs for each system

VII. CONCLUSION

In this work we proposed a lifelong multi-tasking system
referred to as LLGP-Tasking. The proposed algorithm is
an extension of a previously published algorithm referred
to as GP-Tasking [8]. LLGP-Tasking is designed to solve
multiple tasks simultaneously and receives batches of tasks
sequentially. To achieve multitasking, LLGP-Tasking uses a
single population to search the genotype space of all tasks.
Each individual is evaluated with different fitness functions.
Each fitness function correspond to a task and uses its own
training set. This single representation allows the search to
share knowledge among tasks implicitly. Further, it allows
translation of the phenotype into multiple genotype (i.e.,
one translation corresponds to each fitness function). We
also unified the fitness values among different tasks using

TABLE VIII
COMPARISON BETWEEN LLGP-TASKING WITH SEEDED INITIAL

POPULATION FROM KB AND WITHOUT SEEDED IN BATCH 2

Min Avg Median AVG RANK

LLGP 0%

Task 5 w/ KB 7.94 8.11 8.07 1.67
w/o KB 7.91 8.13 8.04 1.33

Task 6 w/KB 676.53 715.00 708.09 1.00
w/o KB 691.77 743.97 747.34 2.00

Task 7 w/KB 25.76 171.20 178.74 1.00
w/o KB 156.63 179.79 181.01 2.00

Task 8 w/ KB 126.91 133.46 133.38 1.33
w/ KB 124.60 133.79 133.89 1.67

Task 9 w/ KB 12.01 12.68 12.61 1.33
w/o KB 12.06 12.67 12.65 1.67

LLGP 5%

Task 5 w/ KB 7.92 8.08 8.02 1.33
w/o KB 7.95 8.07 8.07 1.67

Task 6 w/ KB 675.74 718.66 698.03 1.00
w/o KB 678.18 736.85 739.39 2.00

Task 7 w/ KB 123.07 195.66 176.27 1.33
w/o KB 143.25 175.07 178.62 1.67

Task 8 w/ KB 124.68 134.91 134.03 1.67
w/o KB 128.34 134.69 133.40 1.33

Task 9 w/ KB 44.29 44.00 43.89 2.00
w/o KB 42.89 42.66 42.40 1.00

LLGP 10%

Task 5 w/ KB 7.89 8.04 8.04 1.00
w/o KB 7.93 8.18 8.14 2.00

Task 6 w/ KB 686.56 726.87 717.93 1.33
w/o KB 680.08 778.37 742.81 1.67

Task 7 w/ KB 127.75 168.34 171.89 1.33
w/o KB 122.62 174.46 178.50 1.67

Task 8 w/ KB 125.87 134.20 134.91 1.33
w/o KB 128.32 134.36 134.01 1.67

Task 9 w/ KB 42.37 42.32 42.29 2.00
w/o KB 39.70 39.65 39.63 1.00

LLGP 15%

Task 5 w/ KB 7.94 8.09 8.11 2.00
w/o KB 7.93 8.08 8.06 1.00

Task 6 w/ KB 677.86 717.66 700.57 1.00
w/o KB 686.51 739.85 727.34 2.00

Task 7 w/ KB 122.25 175.77 181.52 1.33
w/o KB 132.29 179.13 180.54 1.67

Task 8 w/ KB 116.36 131.53 133.34 1.00
w/o KB 127.29 135.59 134.63 2.00

Task 9 w/ KB 41.47 41.45 41.44 2.00
w/o KB 38.20 38.16 38.12 1.00

fitness ranking and measured individual’s distances between
geneotype to estimate the position of individuals in different
fitness spaces. This information allowed us to bias selection
toward individuals that have relatively similar locations in
different spaces. Empirical evidences demonstrates benefits
when using this selection and crossover approach.

Moreover, to give LLGP a capability of accumulating
lifelong experience, we stored all the best solutions for each
task in a knowledge base KB. This knowledge base was then
used to seed the initial populations in timme h+1 (i.e., when
the system receives new batch of tasks). In our preliminary
experiments, we tried different methods for seeding the initial
population and we to found that topping up the initial pop-
ulation with 5% randomly selected individuals from KB is
the best and simplest approach. Empirical evidences showed
that the knowledge in KB can be useful when the nature
of tasks in the new batch share similarities with previous
domains. Otherwise, seeds from KB has no negative effects.
Results show that starting the search with information from
previous experience consistently improved the results with
small margins. We believe there is a room for improving the
KB contents and method of transferring knowledge to new
tasks. For example, we may introduce surrogate models to
select particular individuals as seeds from KB rather than
randomly select them. Also, we may test KB geneotyoe
locations and pick up individuals with lowest distances. All
these options will be explored in future research. The authors

are also aware of several works based on deep learning
algorithms for multi tasking. Future work will also compare
these algorithms with the proposed evolutionary approach for
selected and appropriate problems.

REFERENCES

[1] R. M. A. Azad and C. Ryan. A Simple Approach to Lifetime Learning
in Genetic Programming-Based Symbolic Regression. Evolutionary
Computation, 22(2):287–317, 06 2014.

[2] Y. Bi, B. Xue, and M. Zhang. Learning and sharing: A multitask genetic
programming approach to image feature learning. IEEE Transactions
on Evolutionary Computation, 26(2):218–232, 2022.

[3] Z. Chen, B. Liu, R. Brachman, P. Stone, and F. Rossi. Lifelong Machine
Learning. Morgan and Claypool Publishers, 2nd edition, 2018.

[4] A. Gupta, Y. Ong, and L. Feng. Multifactorial evolution: Toward evolu-
tionary multitasking. IEEE Transactions on Evolutionary Computation,
20(3):343–357, June 2016.

[5] A. Gupta, Y. Ong, L. Feng, and K. C. Tan. Multiobjective multifactorial
optimization in evolutionary multitasking. IEEE Transactions on
Cybernetics, 47(7):1652–1665, July 2017.

[6] W. Jaskowski, K. Krawiec, and B. Wieloch. Multi-task code reuse in
genetic programming. In Proceedings of the 10th Annual Conference
Companion on Genetic and Evolutionary Computation, GECCO ’08,
pages 2159–2164, New York, NY, USA, 2008. ACM.

[7] A. Kattan, A. Agapitos, and R. Poli. Unsupervised problem decompo-
sition using genetic programming. In A. I. Esparcia-Alcázar, A. Ekárt,
S. Silva, S. Dignum, and A. Ş. Uyar, editors, Genetic Programming,
pages 122–133, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

[8] A. Kattan, Y. Ong, and A. Agapitos. Genetic programming multitask-
ing. In 2020 IEEE Symposium Series on Computational Intelligence
(SSCI), Canberra, ACT, Australia, SSCI ’20, pages 1004–1012, Oct
2020.

[9] R. Lim, A. Gupta, Y.-S. Ong, L. Feng, and A. N. Zhang. Non-linear
domain adaptation in transfer evolutionary optimization. Cognitive
Computation, 13:290–307, 2021.

[10] Y. S. Ong and A. Gupta. Evolutionary multitasking: A computer science
view of cognitive multitasking. Cognitive Computation, 8(2):125–142,
Apr 2016.

[11] S. J. Pan, Q. Yang, et al. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359,
2010.

[12] A. Pentina and S. Ben-David. Multi-task and lifelong learning of ker-
nels. In Algorithmic Learning Theory: 26th International Conference,
ALT 2015, Banff, AB, Canada, October 4-6, 2015, Proceedings 26,
pages 194–208. Springer, 2015.

[13] R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide to Genetic
Programming. Published via http://lulu.com, 2008. (With
contributions by J. R. Koza).

[14] P. Ruvolo and E. Eaton. Active task selection for lifelong machine
learning. Proceedings of the 27th AAAI Conference on Artificial
Intelligence, AAAI 2013, 27:862–868, 06 2013.

[15] P. Ruvolo and E. Eaton. Ella: An efficient lifelong learning al-
gorithm. In Proceedings of the 30th International Conference on
International Conference on Machine Learning - Volume 28, ICML’13,
page I–507–I–515. JMLR.org, 2013.

[16] T. Wei, S. Wang, J. Zhong, D. Liu, and J. Zhang. A review on
evolutionary multitask optimization: Trends and challenges. IEEE
Transactions on Evolutionary Computation, 26(5):941–960, 2022.

