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Abstract— This paper proposes a new technique based on
Hyper Genetic Algorithm (GA) and Particle Swarm Optimi-
sation (PSO) to evolve optimal agenda for bilateral multi-issue
negotiation. In sequential negotiation the agenda specifies the set
of issues included in the negotiation and the order in which they
will be discussed. A player’s profit from negotiation depends
on the agenda. Each player wants to find an agenda that yields
the highest profit, i.e., his/her optimal agenda. Our proposed
technique identifies the best set of issues to be included in the
agenda as well as the best ordering for the issues in a way
that increases the player’s profit. The proposed technique is
comprised of two GA systems. Firstly, we have an outer GA
system that searches for the best set of issues to be included
in the agenda. Secondly, we have an inner GA system that
searches for the best order of the selected issues. PSO is used
to automatically adjust the parameters of these two GA systems.
Empirical evidence demonstrates that the proposed technique
evolves better agendas than standard GA, 1+1 Evolutionary
Strategy, Fixed Settings Hyper-GA and a simple random search.

I. INTRODUCTION

Negotiation is a process in which disputing players decide
how to divide the gains from cooperation between them-
selves. Since this decision is made jointly by the players
[10], each player can only obtain what the other is prepared
to allow them. The simplest form of negotiation involves two
players and a single issue. For example, consider a scenario
in which a buyer and a seller negotiate on the price of a good.
To begin, the two players are likely to differ on the price at
which they believe the trade should be, but through a process
of joint decision-making they either arrive at a price that is
mutually acceptable or they fail to reach an agreement.

However, before the players can actually perform such
negotiations, they must decide the rules for making offers and
counteroffers. These rules are called the negotiation protocol
or procedure [12], [3]. On the basis of this procedure, each
player chooses a strategy (i.e., what offers to make during the
course of negotiation). For competitive negotiations, which
are the focus of this work, each player chooses a strategy
that maximises their own utility/profit and therefore their
optimal strategy. For example, buyer-seller negotiations are
competitive in nature. For such negotiations, game theory
[9] provides methods for analysing the strategic behavior of
utility maximising players. It provides methods for identi-
fying those strategies that are optimal and stable. Strategies
that are optimal and stable are said to form an equilibrium.
There are various notions of equilibrium, but the one relevant
to our work is the Nash equilibrium [9]. In many buyer-seller
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negotiations, the players need to settle the price of not one
but multiple items. Such negotiations are called multi-issue
negotiations [6].

Multiple items/issues can be negotiated as a bundle or se-
quentially. In this paper, we focus on sequential negotiation.
For sequential negotiation, the outcome depends on the set of
items/issues chosen for negotiation and the order which they
are discussed [3]. This set of issues and its ordering is called
the negotiation agenda. Different agendas yield different
profits to the players [3]. So, a player wants to know what
agenda maximises his/her profit and therefore his/her optimal
agenda. Given a set of m issues, the problem for an agent
is to find a subset of g < m issues to negotiate and order
in which to negotiation in. There are C(m, g) = m!

g!(m−g)!
possible subsets of size g and the elements in each subset
can be ordered in g! ways.

In such multi-issue negotiation, the players usually set
an agenda of size g (size of the agenda is the number
of items/issues within the agenda to be included in the
negotiation), and discuss the issues sequentially. It is most
likely that in a multi-issue negotiation players have different
evaluations regarding the importance of the issues under
negotiation. Thus, some issues may be significant to one
player while insignificant for the other player and vice versa.
Here, the problem for a player is to find an agenda (i.e., of g
issues) that maximises his/her profit and is therefore his/her
optimal agenda.

In this paper, we will refer to the search space of all
possible agendas of size g as C(m, g). Thus, in order to
find which agenda is optimal, we need to determine the right
issues to be included in the agenda and then the right order
of these issues. We call these two problems as A and B,
respectively.

This work proposes a new technique that uses swarm
optimisation to tune the settings of two GA systems (by
settings we mean the population size, number of generations
and search operators’ rates), where each system is directed to
solve the problems (i.e., problem A and problem B). Firstly,
we have an outer GA system that searches for the best set
of issues to be included in the agenda (to solve problem
A). Secondly, we have an inner GA system that finds the
best order of the selected issues in such a way to maximise
the user’s utility function (to solve problem B).1 Each GA
system is associated with numerical weight variables which
are used to identify its population size, number of generations

1Each player has a utility/profit function and the aim is to maximise this
function.



and search operators’ rates. Thus, the weights of the two
GA systems form a six-dimensional vector, which in turn
corresponds to an individual/particle in a swarm population.
Hence, a swarm population (i.e., collection of weights) is
used to optimise the settings of the two GA systems in
such a way to find optimal agendas under maximum number
of evaluations. In a nutshell, we use PSO to automatically
adjust the settings of each system in such a way to keep
the whole process under control and get the best possible
results. We show that our proposed Hybrid-GA-PSO can
solve this problem better than standard GA, 1+1 ES, Hyper-
GA with fixed settings and simple random search. Despite
the simplicity of our current realisation of this idea, the
results obtained by our approach have been remarkable in
the sense that better agendas have been achieved and further
improvement is still possible.

The contributions of this paper are twofold.
1) We propose a system that suggests the best set of

issues to be included in the agenda as well as the best
ordering of these issues before the actual negotiation
process starts. Most existing work has taken the set
of issues as given and analysed the equilibrium for
different procedures (more details in Section II-A).

2) We show that a swarm optimisation can be effectively
used as a meta-search for Hyper-GA’s parameters set-
tings to solve optimisation problems.

The rest of this paper is organised as follows. Section
II briefly discusses previous work related to this research.
Section III presents the negotiation protocol. Section IV
presents a standard GA solution. Section V presents a de-
tailed description of the proposed model. Sections VI and
VII provide details of the experiments. Section VIII draws
conclusions and possible future work.

II. RELATED LITERATURE

A. Optimal Agenda

Negotiation has long been studied by game theorists.
However, the analysis of negotiation typically begins with
a given set of issues and the parties’ utilities for different
possible settlements of the issues. Within this framework,
theorists have investigated a range of procedures such as the
package deal procedure PDP (where the issues are negotiated
together as a bundle), the simultaneous procedure SP (where
the issues are negotiated simultaneously and independently of
each other), and the SQP sequential procedure [3] and have
shown that different procedures yield different outcomes.
Hence, it is important to choose the right procedure. Further-
more, irrespective of the procedure, it is important to choose
the right agenda. This paper is directed toward finding the
right agenda for the SQP.

Although the importance of agendas has been recognised,
most existing work has taken the set of issues as given
and analysed the equilibrium for different procedures. For
instance, [3], [1], [4] take the set of issues as given and show
that the order in which they are negotiated is important in
determining the outcome.

In [2], the authors proposed a Hyper-GA model to evolve
agenda for package deal negotiations. This system consists
of an outer GA, an inner GA search and a Surrogate model
based on Radial Basis Function Network (RBFN). The outer
GA is designed to search the space of all possible agendas.
Thus, in the outer GA, each individual (i.e., agenda) is
represented as a binary string. For m issues, the length of
the string is m. Within the string, ones indicate which issues
are included for negotiation. For a given g (i.e., the size
of agenda), the string can have only g ones. The inner GA
acts as a fitness evaluator for the outer GA’s individuals –
agendas–. For a given agenda in the outer GA population, the
inner GA finds an optimal offer and associated utility. This
utility is the fitness value (i.e., the profit for the agenda).
To speed up the search process in the inner GA, a RBFN
surrogate model was used instead of the inner GA. The
surrogate’s role is to search for potential agendas using a
cheap computational model without the need to invoke an
expensive inner GA run. Once the surrogate suggests an
agenda, the inner GA is used to verify its real fitness.

Unlike [2] (which dealt with PDP), in this paper we
propose a new technique (for the SQP) for not only finding
the best issues to be included in the negotiation but also the
best order for negotiation these issues.

B. GA-based PSO

The idea of using a search algorithm as a meta-search
to search the parameters space of other stochastic search
algorithms is not new. In [14], Zadeh envisioned that it
is advantageous to employ Computational Intelligence (CI)
techniques in combination rather than exclusively.

In [13], GA was used to optimise PSO parameters and
enhance the PSO’s abilities to solve unconstrained optimsa-
tion problems. The performance of the proposed method was
evaluated using six standard problems. Results demonstrated
that the proposed method can converge to global optimum
and obtain better parameter settings for the PSO.

In [11], the author proposed a hybrid method that incor-
porates concepts from GA and PSO and creates individuals
in a new generation not only by crossover and mutation
operations as found in GA but also by the mechanisms of
PSO. In [5], Juang proposed a new evolutionary learning al-
gorithm based on a hybrid of GA and PSO, called HGAPSO.
In HGAPSO, individuals in a new generation are created,
not only by crossover and mutation operation as in GA,
but also by PSO. The concept of elite strategy is adopted
in HGAPSO, where the fittest 50% of the population are
regarded as elites. However, instead of being reproduced
directly to the next generation, these elites are first enhanced
using PSO. The group constituted by the elites is regarded as
a swarm, and each elite corresponds to a particle within it.
Thus, PSO optimise the elite solutions before copying them
into the next generation. The other 50% of the population
is generated by performing standard crossover and mutation
operation on these enhanced elites.

Unlike other work, here we propose PSO system to au-
tomatically optimise the parameters of Hyper-GA system in



such a way to get the best performance within limit number
of evaluation (details in Section V).

III. NEGOTIATION PROTOCOL

The issues on a given agenda are negotiated using a
sequential protocol. In this protocol, the issues are negotiated
one at a time in a given order. Negotiation on an issue does
not begin until the previous issue is successfully negotiated.
For example, if there are m issues on the agenda, then
negotiation on issue i (1 ≤ i ≤ m) begins after all the
previous i− 1 issues are agreed upon. The agreement on an
issue is implemented as soon as it is agreed.

In a typical negotiation, the agents will have different
utility functions. Also, these functions will, in most cases,
be time dependent. That is, an agent’s utility from an issue
will depend not just on the issues itself but also on the time
at which it is agreed upon. So an agent’s cumulative utility
(which is the sum of the utilities for the individual issues
on the agenda) depends not just on the set of issues on the
agenda, but also on the order in which they are negotiated.
A negotiating agent must therefore solve the following two
problems: (A) From a given set of m issues choose g < m
issues and (B) For the g issues that are chosen, find an
ordering that will maximise the agent’s cumulative utility.

IV. A GA SOLUTION

A possible GA solution to the problems A and B (as
defined in Section I) is to use standard GA to explore
the search space of all possible agendas. Thus, individuals
in a GA population represent agendas of size g < m
where g is the number of items/issues to be included in the
negotiation process and m is the total number of available
issues. Each individual is represented as a sequence of
integer values to indicate which issue is selected from m
available issues. In order to ensure that each individual has
a correct syntax, the following rules can be used. Firstly,
the search operators should not allow the same issue to be
used in the agenda more than once. Secondly, the search
operators should allow freedom to the system to explore
different orders for the issues within any agenda. To this end,
two types of mutation operators are implemented; 1) Swap
Mutation: which randomly selects two issues from an agenda
and swaps their locations, allowing the system to explore
different permutations for the same set of issues within the
agenda and 2) One-point Mutation: which randomly selects
an issue from an agenda and replaces it with an other issue
that dose not exist in the agenda. The advantage of this
system that it searches for both the right issues and the right
order of the selected issues in the same process, hence, it is
easy to implement. However, the limitation of this standard
GA system is that it requires large number of evaluations
to be able to evolve competitive agendas. Moreover, this
system can easily get trapped in local optima which prevent
it from exploring superior solutions in the C(m, g) search
space (results of this standard GA system are presented
in Section VII). To solve these problems we present the
following technique.

V. PROPOSED METHODOLOGY

This technique is based on GA and PSO. The proposed
technique comprised of two GA systems working together
to solve the whole problem in cooperation; 1) Outer GA and
2) Inner GA. The outer GA system searches for the best
set of issues to be included in the agenda. For this task,
the outer GA uses two types of mutation operator, namely,
swap mutation and one-point mutation. Note that using these
two types of search operators, as in the standard GA system
described earlier in Section IV, allows the outer GA to not
only find the right issues of the agenda, but also to explore the
potential of the agenda when reordering its issues (inner GA
will further explore different permutations of the agenda).
Once the outer GA evolves an agenda AG, it passes it to
the inner GA system. The search space of the inner GA
is all possible permutations of AG (i.e., g!). The inner GA
searches for the best order of the selected issues from g!
possible permutations in such a way as to maximise the
negotiator’s utility function. Thus, the initial population of
the inner GA is comprised of different sequences of AG
which were received from the outer GA. The inner GA uses
a single search operator to explore different permutations
within AG, namely, swap mutation.

The fitness measure for both GA systems (i.e., outer GA
and inner GA) is defined by a utility (or profit) function that
receives an agenda AG as an input and returns a profit value
(real number) as an output. The utility function is a non-
linear function (a detailed description of the utility functions
used in our experiments is provided in Section VI).

In order to use two GA systems, it is important to find
the ideal settings for each system in such a way to get the
best results of both systems. One possibility is to set the
population size and number of generations in each system
to large numbers; however, this approach is computationally
expensive especially if the user’s utility function expensive
to evaluate (which is not uncommon is many real world
problems). Hence, we use PSO to automatically adjust the
size of population and number of generations in each system
as well as the search operators’ rates in such a way as
to keep the whole process under control and get the best
possible results. For this task, each GA system is associated
with a set of numerical weights W = {w0, ..., wi}, where
wi ∈ i = {0, ..., 5}, which is used to identify its settings.
Table I illustrates the description of each variable.

During the optimisation process of the particles, two
constraints are applied to ensure the validity of all settings.
Constraint 1, to prevent the PSO from setting a large num-
ber for the population size and for number of generations
(that potentially may be computationally infeasible) the total
number of evaluations of both GA systems are not allowed
to exceed a predefined maximum number of evaluations.
Hence, (w0 × w1) + (w2 × w3) ≤ max explorations. The
max explorations is the upper limit of evaluations for both
GA systems. Thus, the total number of evaluations performed
by the inner GA and outer GA in any single run should
not exceed this upper limit. The reason of setting this upper



TABLE I
PSO’S PARTICLES REPRESENTATION

Variable Description Value
w0 Population size of the outer GA Integer (1...max explorations)
w1 Number of generations in the outer GA Integer (1...max explorations)
w2 Population size of the inner GA Integer (1...max explorations)
w3 Number of generations in the inner GA Integer (1...max explorations)
w4 Swap Mutation rate of the outer GA Real number (0...1)
w5 One-Point Mutation rate of the outer GA Real number (0...1)

limit of evaluations is to allow the user to define an upper
boundary of the computational costs. For constraint 2, the
total rates of Swap mutation and One-Point mutation is 1,
thus

∑5
i=4 wi = 1. The weights of the two GA systems are

forming a six-dimensional vector V = {w0, ..., w5}, which
in turn corresponds to an individual in a swarm population
Ppso = {V0, V1, ..., Vn}, where n is the size of the swarm.
Hence, swarm population (i.e., collection of weights) is used
to optimise the setting of the two GA systems in such a
way to find optimal agendas under a limited number of
evaluations.

A. Procedures

The proposed technique works as follows. Firstly, the
system randomly initialises a swarm population of size n,
according to the constraints mentioned in Section V. For
each individual/particle Vj in Ppso the system runs the two
GA systems (i.e., outer GA and then inner GA) using the
settings from the Vj .

Once the system evaluates all Vj particles in Ppso, it
allocates the best particle (i.e., the one which provided the
best adjustment to the outer and inner GAs in such a way
to return the best agenda) as a center and all other particles
in the Ppso move toward the center using a velocity value
Vj [wi]. Kennedy and Elberhart proposed some velocity con-
trol equations in [7]. After several preliminary experiments,
we found the best way to adjust the particles’ velocities in
our application is according to their difference from the best
known location for each wi in Vj particle as follows:
if(centerwi

< Vj [wi])

Vj [wi] = Vj [wi]− vFactor× rand1× [|centerwi
−Vj [wi]|]

else if(centerwi > Vj [wi])
Vj [wi] = Vj [wi] + vFactor× rand1× [|centerwi −Vj [wi]|]
(1)

Thus, each particle in Ppso remembers the globally best
position (which is found by a member in the flock). Each
particle moves into the six-dimensional weights space (or
parameters space) which denoted in the equation above as
Vj [wi], where Vj represents the jth particle and wi represents
the ith dimension. The vFactor is a predefined constant and
used to set the max step of any Vj particle in the Ppso.
Preliminary experiments show the best value for vFactor is
0.1. At each move, the system checks whether the particles’
values satisfy the constraints mentioned in Section V. If
the particles are not satisfying these constraints then a new

rand1 value is placed in Equation 1 until all constraints are
satisfied. The process of velocity adjustment iterates until the
maximum number of moves.

Algorithm 1 broadly outlines the whole process. Thus,
in line 1, the system generates Ppso, of size n particles,
according to the constraints defined in Section V. In lines
3 - 11, the system iterates over Ppso. For each Vj , it
calculates the population size, number of generations, and
search operators’ rates for the outer and inner GAs (lines 4 -
9). Thereafter, the system runs the outer GA based on its new
settings (line 10). The best agenda found by the outer GA
stored into a variable called AG and then passed to the inner
GA, where the system starts to explore different permutations
for AG (line 11). In line 12, the best Vj treated as a center
and all other individuals in Ppso update their velocity values
(as explained in Equation 1) to move toward the center (line
13).

Algorithm 1: PSO tuning Hyper-GA settings

1 Random-Generate-Swarm(Vj)[w0, ..., w5], n)

2 repeat
3 foreach Vjdo
4 OuterGA Pop = w0;
5 OuterGA Gen = w1;
6 InnerGA Pop = w2;
7 InnerGA Gen = w3;
8 OuterGA Swap Mutation = w4;
9 OuterGA One-Point Mutation = w5;

10 Agenda AG = Run(OuterGA);
11 Agenda Best AG = Run(InnerGA, AG);

12 centerbest[w0, ..., w5] = Best AG
13 Update-All(V[w0, ..., w5])

14 until max-moves;

The size of the swarm population and number of moves
is related to the problem difficulty (more details on the
parameters’ setting are provided in Section VI).

VI. EXPERIMENTS SETUP

Experiments were conducted on various agenda sizes g
out of m different number of issues to be included in the
negotiation. The main aim of the experiments is to evaluate
the performance of the model and to assess its behaviour. As



a reference of performance, we compared the model against
1) Standard GA to measure whether our Hyper-GA system
based on PSO managed to outperform a simple and standard
solution of this problem, 2) 1+1 Evolutionary Strategy (ES),
based on one-point mutation, to compare our method against
standard search algorithm, 3) a Hyper-GA with fixed setting
to ensure that parameters search improves the performance
of the system and finally, 4) a simple Random Search (RS).
The reason we included a random agenda generator in the
comparison is because, whereas it is safe to assume that in
practise evolutionary algorithms are better than a random
search under normal circumstances, however, with small
samples random search can do relatively well. In addition, we
included in the comparison a simple baseline method which
is used to estimate the global optimum of the given C(m, g)
search space. This baseline method applies a very large GA
search (i.e., the standard GA described in Section IV) using
a population size of 1000 in 1000 generations and we run it
for 100 independent runs and reported the best results of all
runs.2

A utility function can be any real-valued function f :
Rg → R from the space of functions. Therefore, in principle,
any function can be used as a utility function. In our
experiments we evaluated the system’s performance using
three different well-known benchmark problems. Namely,
Rastrigin function, Dixson & Price function and, finally,
Michalewics function [8] (see mathematical notations in
Appendix ). The reason for choosing these three functions
in particular is because they represent different landscapes
with different levels of difficulty. The Rastrigin function
has the overall structure of a hyper-parabola with many
bumps, whereas the other two functions have a smooth
landscape but deceptive (the best optima are on different
sides of the search space). In other words, they have key
features of a typical utility function. For each function,
we investigate the performance of the system under five
different values of g. Thus, g = 20, 30, 40, 50 and 60. For all
experiments m = 100. For each g,m combination we tested
the system using 20 independent runs. Numerical results
were summarised to conclude the system’s behaviour (see
Section VII). Table II illustrates the settings of GA systems
used in the experiments.

Since the problem complexity is related to the g value,
here, we relate the value of max explorations (the upper
limit of evaluations for both GA systems as explained in Sec-
tion V) to problem complexity. Thus, max explorations =
[g × 5]2. So, essentially our aim is to find the best solution
to the problem the algorithm can produce in quadratic time
out of an exponential number of candidate solutions in the
C(m, g) space. The size of Ppso is equal to g×2

10 and the
number of moves for each particle in the swarm is 10. Thus,
each particle in the Ppso effectively runs the outer and inner
GAs 10 times in a process of tuning their parameters. Note

2This baseline method is computationally expensive which makes it im-
practical solution. Here, we used this method as a reference of performance
only.

that the total number of agendas evaluations performed by
both GAs (i.e., the outer and inner GAs) in any single eval-
uation of Vj will not exceed the max explorations value.
Hence, to allow a fair comparison, when each individual in
the Ppso runs the two GA systems, we run all systems in
the comparison using the same number of evaluations (i.e.,
max exploration) and report the best results.

TABLE II
SETTINGS USED IN THE EXPERIMENTS

Hyper-GA fixed parameters
Operator Outer GA Inner GA Standard

GA
1+1
ES

Random
Search

One-Point Mu-
tation

70% 0% 70% 100% N/A

Swap Mutation 30% 100% 30% 0% N/A
Tournament size 2 2 2 N/A N/A
Population Size g×5

2
g×5
2

g × 5 1 [g × 5]2

Generations g×5
2

g×5
2

g × 5 [g × 5]2 N/A

VII. RESULTS

We compared the performance (both in terms of finding
the best and the average of the best solutions) of our proposed
approach (Hybrid GA-PSO) versus four different approaches
(Standard GA, (1+1) ES, Hyper GA with fixed parameter
settings and simple Random Search ). Tables III,IV and V
report these results.

Our proposed approach, Hybrid GA-PSO, outperformed
its competitors in almost all cases. For instance, if we
focus our attention on the system’s behaviour when Rastrigin
function is the fitness measure. Clearly, it outperforms its
competitors in all five g values (indicated in boldface in Table
III) compared with the other four approaches. If we further
continue analysing these results, we can see that our approach
still outperform its competitors on average on all cases of
Rastrigin function. The fixed Hyper-GA comes in the second
place in all g values and then the standard GA in the third
place. 1+1 ES and Random Search come in the fourth and
fifth places, respectively. This indicate that using PSO to tune
the parameters of the Hyper-GA has added extra flexibility
to the system and sequentially improved its performance.
Also, the results’ differences between the fixed Hyper-GA
and Hybrid GA-PSO shows that parameters’ settings of a
search algorithm is an essential part its success or failure.

If we, now, turn our attention on the system’s behaviour
when Dixon & Price function is the fitness measure – which
has smoother landscape than Rastrigin function– it is clear
that Hybrid GA-PSO still outperforms its competitors and
achieves the best results in all cases (indicated in boldface in
Table IV). Moreover, Hybrid GA-PSO managed to achieve
the estimated global optimum (using the baseline method)
in g = 30. This is a remarkable result in the sense that
Hybrid GA-PSO using 5g2 evaluations managed to achieve
the same results as a large GA search that uses 1000×1000×
20 evaluations in this particular case. Similar to Rastrigin
function, the fixed Hyper-GA comes in the second place in
all g values and then the standard GA is in the third place.



TABLE III
SUMMARY OF 100 INDEPENDENT RUNS WITH THE RASTRIGIN FUNCTION (20 RUNS FOR EACH g VALE).

Standard GA Hybrid GA-PSO 1+1 (ES) Fixed Hyper-GA Random Search
g= 20

Estimated Global Opt. = 687.932
Mean 628.47 643.15 521.65 635.96 437.62
Std 11.58 36.22 19.06 6.30 15.58
Best 651.47 678.97 579.08 649.17 479.07

g= 30
Estimated Global Opt. = 996.834

Mean 878.89 921.69 732.22 882.19 633.60
Std 7.29 5.11 21.36 5.42 21.24
Best 890.35 927.03 801.51 895.73 677.48

g= 40
Estimated Global Opt. = 1271.59

Mean 979.86 1033.68 812.76 992.55 641.80
Std 4.67 1.73 21.63 6.68 24.73
Best 989.50 1034.79 868.42 1006.54 694.45

g= 50
Estimated Global Opt. = 1582.32

Mean 1091.63 1127.55 953.57 1101.13 729.63
Std 8.47 2.84 28.36 6.11 18.34
Best 1111.93 1131.78 1018.65 1111.02 764.52

g= 60
Estimated Global Opt. = 1895.41

Mean 1234.32 1275.61 1175.52 1245.37 927.56
Std 4.86 0.06 26.60 3.99 23.22
Best 1243.71 1275.76 1226.08 1252.92 992.58
*Bold numbers are the highest. Underlined numbers are the second best.

Finally, looking at the system’s behaviour when the
Michalewics function is the fitness measure, it can be seen
that Hybrid GA-PSO managed to achieve the best agendas
in all five g values. However, Standard GA has slightly
outperformed Hybrid GA-PSO averages in g = 20. Also,
surprisingly, unlike the previous two functions, results of the
Standard GA comes in the second place after Hybrid GA-
PSO and fixed parameters Hyper-GA in the third place. This
indicate that the standard settings which have been used in
Fixed settings Hyper-GA (see table II) was not suitable to
solve this particular problem effectively.

Another surprising observation, is that results show that
random search achieved better solutions than 1+1 ES in g =
20 and g = 30. This is probably because random search
exhibits a larger variance than 1+1 ES and with a “stroke of
luck” it can be better.

We noticed that in all experiments the Hybrid GA-PSO
produces a higher standard deviation than its competitors in
some cases and a lower standard deviation in other cases.
This is expected because PSO individuals are searching for
the best settings of the two GA systems (i.e., outer and inner
GAs) in the parameters’ space. Thus, depending on the PSO
initial population, each Vj individual explores different area
in the search space, and thus, each Vj tries different settings
which is not necessarily to the best in a process of optimising

the solution. To further verify the significance of our results,
a Kolmogorov-Smirnov two-sample test was performed on
the test case results produced by the best evolved agenda in
each run for all pairs of systems under test and for all g
test cases. Table VI reports the p-value for the tests. As can
be seen in the table, the proposed approach is statistically
significantly superior to its competitors in all g cases for all
three functions at the standard 5% significance level.

VIII. CONCLUSIONS

This paper proposes a new technique based on GA and
PSO to evolve an optimal agenda for sequential multi-issue
negotiations. Our proposed technique identifies the best set
of issues to be included in the agenda as well as the best
order of the issues in such a way to increase the players’
profit. For this task, we propose a new technique that uses
swarm optimisation to automatically adjust the settings of
two GA systems, where each system is directed to solve
part of the problem. Firstly, we have an outer GA system
that searches for the best set of issues to be included in the
agenda. Secondly, we have an inner GA system that finds the
best order of the selected issues in such a way to maximise
the user’s utility function.

There are two main contributions in this paper. Firstly,
we propose a system that suggests the best set of issues to



TABLE IV
SUMMARY OF 100 INDEPENDENT RUNS WITH THE DIXON & PRICE FUNCTION (20 RUNS FOR EACH g VALE).

Standard GA Hybrid GA-PSO 1+1 (ES) Fixed Hyper-GA Random Search
g= 20

Estimated Global Opt. = 6019.80
Mean 5721.65 5811.93 4572.87 5786.51 3988.72
Std 51.80 164.75 119.27 42.19 181.26
Best 5815.65 6036.46 4789.11 5851.56 4551.84

g= 30
Estimated Global Opt. = 11631.30

Mean 11122.02 11552.93 9190.08 11323.14 7905.44
Std 30.64 57.14 372.72 63.35 192.18
Best 11184.60 11631.30 9836.07 11397.10 8330.38

g= 40
Estimated Global Opt. = 21959.10

Mean 20882.64 21619.96 16886.37 21328.87 14831.70
Std 101.53 21.00 178.76 10.32 303.70
Best 21077.80 21638.70 17215.30 21334.40 15158.40

g= 50
Estimated Global Opt. = 32973.90

Mean 30172.31 31000.48 25700.93 30698.66 22100.88
Std 600.13 656.87 1046.31 572.12 781.61
Best 31454.70 32499.70 28940.30 32001.50 23850.20

g= 60
Estimated Global Opt. = 42371.70

Mean 38215.93 38934.80 34207.72 38837.48 28316.05
Std 862.22 777.30 1151.23 850.66 1022.37
Best 39015.80 39424.20 36613.40 39364.10 29550.90
*Bold numbers are the highest. Underlined numbers are the second best.

be included in the agenda as well as the best ordering of
these issues before the actual negotiation process starts. To
the best of the authors’ knowledge, most existing work has
taken the set of issues as given and analysed the equilibrium
for different procedures. Secondly, we show that a swarm
optimisation can be effectively used as a meta-search for
Hyper-GA’s parameters settings to solve continuous optimi-
sation problems.

Three different standard benchmark optimisation functions
were used as utility functions to test the proposed technique.
Results demonstrate that the proposed technique evolves
better agendas than standard GA, 1+1 ES, Hyper-GA with
fixed parameters and simple random search in all experi-
mental cases. Kolmogorov-Smirnov two-sample shows that
the proposed approach is statistically significantly superior to
all of its competitors in all g cases for all three functions at
the standard 5% significance level. In addition, results shows
that the performance margins between Hyper-GA with fixed
parameters and Hyper-GA with tuned parameters using PSO
is significant, which indicates that the settings of a search
algorithms is essential part of it’s success or failure.

There are many directions were we can extend this work.
For example, we can allow PSO to tune the GAs settings
based on their populations’ diversity rather than using their
direct fitness. Also, in the current version of the system,

the whole swarm converges toward a single leader. Thus,
a potential an extension of this work is allow the swarm
converge to multiple leaders in the population.

APPENDIX

AG refers to an agenda of size g. Here, AG is a vector that
contains the negotiation items which found by GA search.
The f(x) represents a utility function.

Rastrigin function:
f(AG) = 36g×

∑g
i=1AG[i]×cos([10.24×0.5i−5.12]2)−

([10.24× 0.5i − 5.12]2)× 2π)× 10.
[8]

Dixson & Price function:
f(AG) = [AG[0]−1]2 +

∑g
i=1 i× [AG[i]×2]2−AG[i]−1.

[8]
Michalewics function:

f(AG) =
∑g
i=1 sin(AG[i]2)× sin( i×AG[i]2

π )2m

where m = 10. [8]
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TABLE VI
KOLMOGOROV-SMIRNOV TEST.

G Hyper GA-
PSO vs. GA

Hyper GA-
PSO vs. 1+1
ES

Hyper GA-
PSO vs.
Random
Search

Hyper GA-
PSO vs. Fixed
parameters
Hyper-GA

Rastrigin Function
20 0.0026 4.7406e-09 5.5466e-10 0.05091
30 5.5466e-10 5.5466e-10 5.5466e-10 5.5466e-10
40 5.5466e-10 5.5466e-10 5.5466e-10 5.5466e-10
50 5.5466e-10 5.5466e-10 5.5466e-10 5.5466e-10
60 5.5466e-10 5.5466e-10 5.5466e-10 5.5466e-10

Dixon& Price Function
20 0.0082 5.5466e-10 5.5466e-10 0.0232
30 5.5466e-10 5.5466e-10 5.5466e-10 5.5466e-10
40 5.5466e-10 5.5466e-10 5.5466e-10 5.5466e-10
50 1.5295e-06 5.5466e-10 5.5466e-10 0.0082
60 2.4894e-07 5.5466e-10 5.5466e-10 0.05091

Michalewics Function
20 0.0082 5.5466e-10 5.5466e-10 0.0082
30 0.0082 5.5466e-10 5.5466e-10 5.5466e-10
40 5.5466e-10 5.5466e-10 5.5466e-10 5.5466e-10
50 5.5466e-10 5.5466e-10 5.5466e-10 5.5466e-10
60 5.5466e-10 5.5466e-10 5.5466e-10 5.5466e-10
*Bold numbers are lower that 5% significance level.


