
Time-Series Event-Based Prediction: An Unsupervised
Learning Framework Based on Genetic Programming

Ahmed Kattan

AI Real-world Application Lab, Um Al Qura University, Saudi Arabia

Shaheen Fatima

Department of Computer Science, Loughborough University, Loughborough, UK

Muhammad Arif

AI Real-world Application Lab, Um Al Qura University, Saudi Arabia

Abstract

In this paper, we propose an unsupervised learning framework based on Genetic Pro-
gramming (GP) to predict the position of any particular target event (defined by the
user) in a time-series. GP is used to automatically build a library of candidate tempo-
ral features. The proposed framework receives a training set S = {(Va)|a = 0...n},
where each Va is a time-series vector such that ∀Va ∈ S, Va = {(xt)|t = 0...tmax}
where tmax is the size of the time-series. All Va ∈ S are assumed to be generated from
the same environment. The proposed framework uses a divide-and-conquer strategy
for the training phase. The training process of the proposed framework works as fol-
low. The user specifies the target event that needs to be predicted (e.g., Highest value,
Second Highest value, ..., etc.). Then, the framework classifies the training samples
into different Bins, where Bins = {(bi)|i = 0...tmax}, based on the time-slot t of
the target event in each Va training sample. Each bi ∈ Bins will contain a subset of
S. For each bi, the proposed framework further classifies its samples into statistically
independent clusters. To achieve this, each bi is treated as an independent problem
where GP is used to evolve programs to extract statistical features from each bi’s mem-
bers and classify them into different clusters using the K-Means algorithm. At the end
of the training process, GP is used to build an ‘event detector’ that receives an unseen
time-series and predicts the time-slot where the target event is expected to occur. Em-
pirical evidence on artificially generated data and real-world data shows that the pro-
posed framework significantly outperforms standard Radial Basis Function Networks,
standard GP system, Gaussian Process regression, Linear regression, and Polynomial
Regression.

Keywords: Unsupervised Learning, Genetic Programming, Time-series, K-means,

Email addresses: Ajkattan@uqu.edu.sa (Ahmed Kattan), S.S.Fatima@lboro.ac.uk
(Shaheen Fatima), Mahamid@uqu.edu.sa (Muhammad Arif)

Preprint submitted to Information Sciences August 17, 2014

Prediction, Event detection.

1. Introduction

A time-series is a sequence of data points, measured typically at successive time
instants spaced at equidistant time intervals. Usually, time-series data have a natu-
ral temporal ordering, which makes time-series analysis distinct from other common
data analysis problems, in which there is no natural ordering of the observations. In
many real-world applications, a vector V of observations {x0, x1, ..., xtmax} collected
from equidistant time periods maintains some form of salient characteristics that can
be exploited to predict the near future. Although time-series analysis algorithms may
use solid mathematical formulas or complex statistical models, their predictions are
entirely limited to the available historical data. Thus, no matter how accurate these
algorithms tend to be on training data, they cannot guarantee a 100% correct prediction
of the future. For this reason, time-series prediction can be seen as conditional state-
ments of the form that “if such-and-such behaviour continues in the future, then so and
so may happen...” [7].

Generally, time-series analysis is divided into two categories; A) Forecasting al-
gorithms in which the aim is to predict the value x at time t + 1 given that sufficient
historical data points are available, and B) Discovering events in a time-series. Discov-
ering an event means to detect unusual variations in the time-series pattern and label
them as rare events. An event in a time-series is defined as “the occurrence of a vari-
ation in values over a time span that is of particular interest to a user” [37]. The
focus of this paper is on time-series events detection. Generally, work on time-series
event-based detection is divided into two main categories. The first category is based
on extract rule sets from the time-series and correlate them with particular events using
machine learning algorithms (e.g., see [36]). The disadvantage of these techniques is
that they are suitable only when rules for determining the occurrence of an event are
clear and well understood. The second category is to detect changes in the flow of the
time-series values and label these changes as events (e.g., see [37]). The underlying
assumption of these models is that it is possible to mathematically model a time-series
to detect unusual variations. The advantage of this approach is that it requires no previ-
ous knowledge of the problem domain. However, its main disadvantage is that it looks
at the time-series from only one dimension, assuming events are correlated by the past
behaviour in the time-series itself and ignoring the fact that other variables may cause
an event. Another disadvantage is that it defines events based on time-series variations
and prevents the user from defining a particular event of interest.

For the purpose of this work, we consider an event to be the occurrence of an
occasion defined by the user. For example, given a time-series vector V = {(xt)|t =
0...tmax}, a user may sometimes be interested in knowing when the highest point (i.e.,
max xj for 0 ≤ j ≤ tmax) is likely to occur (tmax is the size of the time-series). In
general, the user may be interested in knowing when the nth point will occur (e.g.,
highest point, second highest, or the lowest point in an unseen time-series), depending
on the problem domain.

The contributions of this paper are twofold:

2

1. We propose an unsupervised learning framework based on GP to predict the
position of any particular target event (defined by the user) in an unseen time-
series.

2. Unlike other time-series-event based detectors, the proposed framework learns
the behaviour of the environment that generates the time-series itself and uses
this knowledge to predict when a target event is likely to occur in an unseen
time-series.

The proposed framework receives training examples of historical time-series vec-
tors generated from the same environment and uses GP to automatically build a library
of candidate temporal features. In this paper we will use the term “behaviour” to refer
to statistical features. Thus, for example, as illustrated in Figure 1, two time-series
V1 and V2 generated from the same environment may not be identical but have sim-
ilar behaviour in their trends of going up and down. In real-world applications, the
environment can be anything including, but not limited to, stock markets, buyer-seller
negotiations, or prices of oil, gas, or electricity in international markets.

The proposed framework works as follows. The examples of the training set are
first put in different bins based on the exact time (in [0, tmax]) at which the event of
interest happens. All bins are considered independent learning problems, and the next
goal is to partition each bin into clusters of time-series of similar statistical features
using GP and the K-Means algorithm. As new unseen time-series comes in (sequen-
tially, one point at a time), the system measures the similarity between the new unseen
time-series and clusters that have formed in the training phase. The closest cluster
among all clusters of all bins is computed, and the algorithm returns the time of oc-
currence of the event as its prediction (more on this in Section 3). One advantage of
the proposed framework is that it allows the user to define a particular target event of
interest. Another advantage of this framework is that it requires no previous knowledge
of the problem domain in order to predict events. As will be shown in the experiments
section, this approach is experimented with, first on artificial data for the sake of un-
derstanding the behaviour of the method, then on real-world data from Google Trends
service, reporting frequencies of use of keywords in Google searches. The results of
the proposed method are better than those of standard Radial Basis Function Networks,
standard GP system, Gaussian Process regression, Linear regression, and Polynomial
Regression.

The proposed framework has many potential applications. For example, in eco-
nomics, a monopsony is a market form in which only one buyer faces many sellers
(e.g., for military equipment, contracts are limited to governments) [20]. Each seller
makes different offers to the buyer in different time-slots based on their true valuation
of the deal. The buyer needs to know the best time to accept an offer before it increases
and the buyer loses the opportunity to maximise his/her savings. The buyer cannot
recall offers from the past because the seller’s interests and true valuation change over
time. Another example is multi-round online auctions with limited time steps [34].
Here, if the buyer stores historical data about the sellers’ behaviour, he/she can pre-
dicts whether the seller’s bids will win on item, the seller will re-list the same item in
the next round with a lower price, or he/she should bid in the current round. Also, as
we will see in the experiments section, the proposed framework can be used to anal-

3

Figure 1: V1 and V2 not identical but have similar behaviour.

yse time-series data regarding keyword searches on the Internet and predict the next
peak to assist marketing managers in deciding the best time to release their digital mar-
keting campaigns. In addition to the examples mentioned above, the framework can
assist market makers in understanding the behaviour of the player so as to design better
market rules. Hence, understanding the buyer-seller relation is very useful for situa-
tions when governments decide to intervene in the stock markets (or any other market)
during a crisis. In order to minimise the impact of a crisis, governments sometimes
opt for injecting cash through buying shares from different stocks. However, such acts
may not induce the right reaction when the correct rules of engagement are not prop-
erly set up and followed. By carefully studying the players’ behaviour gain in such a
scenario, governmental efforts towards salvaging markets during panic periods may be
more effective.

The remaining of this paper is organised as follows. In the next section, we discuss
related work and highlight the difference between our framework and other existing
algorithms. In Section 3, we provide a comprehensive description of the framework.
This is followed by experimental results and analysis in Sections 4 and 5, respectively.
Finally, conclusions and possible future work is provided in Section 6.

2. Related Work

2.1. GP for Time-series Forecasting

Time-series forecasting algorithms can be divided into two main categories, A) al-
gorithms to forecast univariate time-series, and B) algorithms to forecast multivariate
time-series [35]. The difference is that the former assumes that the future behaviour of
the time-series is affected by its past, for example, say, sales are affected by sales levels
in previous periods. However, the latter assumes that other variables impact the time-
series behaviour, for example, sales are affected by marketing budget. It is possible that
a forecasting method could combine more than one of the above approaches, as, when
an algorithm hybridises univariate with multivariate forecasts to adapt its performance

4

based on the patterns [7]. Researchers are trying to develop accurate forecasting mod-
els. Typically, standard forecasting algorithms are based on statistical models [5]. Most
statistical forecasting methods assume that the time-series can be rendered as approx-
imately stationary through the use of mathematical transformations [1]. For example,
Nogales and Conejo in [23] proposed a transfer function model to predict electricity
prices based on both past electricity prices and demands.

Although statistical models have dominated time-series forecasting research for a
long time, researchers recently have realised the benefits of evolutionary computation
and, in particular, GP in solving this problem. GP has been used for time-series pre-
diction in several applications. The application of the GP in the time-series forecasting
domain has been mainly used to induce a prediction model consisting of the best pos-
sible approximation of the stochastic process that could have generated by an observed
time-series. Thus, the aim is to induce a model f that maps a vector V to the value
xt+1, where V is a vector of previously collected observations. These models are
known as single-step predictors [1], and used to predict one step ahead of the time-
series given that V contain sufficient historical information. GP has also been used for
long-term forecasts [1], where iterated single-step prediction models are employed to
forecast further steps beyond xi+1. The idea is that the system uses its output predic-
tions as inputs with the original time-series, assuming that the prediction is accurate
enough to iteratively build-up the model . The predicted output is fed back as input for
the next prediction while all other inputs are shifted back one place. The weakness of
this mechanism that it is sensitive to its initial output values, as the prediction errors in
the initial predictions may drift the model’s predictions in subsequent iterations.

A recursive time-series prediction based on GP was proposed in [25]. In this work,
the author used GP to evolve an approximation model that represents a simple predic-
tion process. Then a second model is evolved through with a new training data, which
are the prediction errors of the previous model. This process repeats for a fixed number
of iterations. The final model is the weighted summation of all evolved models. The
values of the weights are optimised using a GA engine.

Geum in [19] proposed a Genetic Recursive Regression (GRR). The idea was initi-
ated from the weakness of the standard GP in forecasting stochastic time-series. Thus,
the author applied the standard GP (forecasting the time-series as a standard symbolic
regression) recursively to solve different parts of the time-series. To this end, an as-
sumption was made that the dynamics of a time-series comprise a deterministic and a
stochastic part. Using a ‘zoom-in’ metaphor the recursion process starts by zooming in
on the difference of the residual time-series. By subtracting the model built by standard
GP for the deterministic part from the original time-series, the stochastic part would be
obtained as a residual time series. At the end of this recursion process, GRR ends with
several evolved expressions. The algorithm compiles all expressions in a regression
model as a0 + a1 · exp1 ++ an · exp2. The numerical coefficients ai are obtained
by the least square method with regression model.

Using the same idea but with different implementation, Chen et al. in [8] proposed
a hybrid evolutionary method to identify a system of ordinary differential equations
(ODEs) and a particle swarm optimization (PSO) algorithm to fine tune the parame-
ters of the additive tree models for the system of ordinary differential equations. In
this work, the authors used tree-like representation where the root node is fixed at the

5

‘+’ operator and N number of branches each represents an equation. A population
of additive trees is generated and standard search operators are applied to guide the
evolutionary process. At some interval of generations, the best tree is selected to be
further optimised using PSO. The PSO optimises the set of weights so the root node
represents the weighted summation of all of its branches. The proposed algorithm was
validated on a network traffic dataset and compared against the traffic prediction of
gene expression programming (GEP) and GP system.

Tsang et al. in [33] proposed a decision support tool for financial forecasting based
on a GP called Evolutionary Dynamic Data Investment Evaluator (EDDIE). In this sys-
tem, GP is used to evolve decision trees. The evolved decision trees receive indicators
that are collected from the finance literature. The contribution of EDDIE is effectively
searching for combinations (interactions) of financial indicators. According to the au-
thors, EDDIE can test users’ hypotheses, for example, “will any of these shares rise by
r% within the next n days?” so as to make buy/sell recommendations.

In [1], Agapitos et. al. used GP to predict winning bidding prices for customer
offers in the Trading Agent Competition - Supply Chain Management (TAC SCM)
game 1 were the problem of price prediction was presented as a time-series forecast-
ing problem. The SCM environment was treated as a black-box system that generates
time-series in terms of winning bids that reflect the variable macro-economic factors in-
fluencing the market at a particular point in time. GP has been supplied with a language
to allow extraction of statistical features from the given time-series. Each function in
the primitive set receives three inputs: A) the vector of time-series, B) the start location
where the operator will be applied, and C) the end location where the operator will
end. Thus, GP extracts different features from different intervals on the given time-
series. The same author, in [2], proposed a seasonal forecasting temperature model
by means of GP. GP was applied to learn an accurate, localised, long-term forecast
of a temperature profile as part of the broader process of determining the appropriate
pricing model for weather derivatives. The author explored two families of program
representations for time-series modelling. The first is the standard GP technique,in
which forecasting is solved as a standard symbolic regression problem. The second
representation is based on long-term forecast (iterated one-step prediction) to resemble
autoregressive (GP-AR) and autoregressive moving average (GP-ARMA) time-series
models. The three models were used in a bagging framework together to build one
generalised prediction model. The results show that ensemble learning of multi-model
predictors enhanced their generalisation ability, unlike the use of single-model pre-
dictions. Standard GP (solving the problem as a symbolic regression) was unstable,
producing some very poor-generalising models in some cases, while the performance
of (GP-AR) and (GP-ARMA) models showed higher stability.

In [6], Cao et al. presented an approach to the evolutionary modelling problem of
ordinary differential equations based on embedding a genetic algorithm (GA) into a
GP system; the latter was employed to discover and optimise the structure of a model,
while the former was employed to optimise its parameters.

1This game was introduced by Carnegie Mellon University and the Swedish Institute of Computer Sci-
ence in 2003 [24].

6

In [10], a new multi-level GP approach is introduced for forecasting transport en-
ergy demand. In [38], the authors propose a forecast method which is a GP framework
based on least square method.

2.2. Event-Based Detection
Time-series analysis models have been used to forecast the values of the future ob-

servations or to discover non-linear relationships among time-series variables to detect
an event of interest. In this section, we will focus the literature review on time-series
event-based prediction models, since they are more relevant to the work reported in this
paper.

Time-series event detection is referred to as “change-point detection” in the statis-
tics literature [12]. Guralnik and Srivastava [12] developed an approach for event de-
tection in time-series data. The approach detects events by detecting the change in the
model that describes the underlying data. The authors proposed two versions of their
model: A) a batch version in which the model receives all time-series data before pro-
cessing, and B) an incremental version in which the model processes new data-points
one at a time.

Povinelli et al. [28] proposed a method for analysing time-series data that was
inspired by data mining to predict future events, The proposed method employs time-
delayed embedding and identifies temporal patterns in the resulting phase spaces. Hence,
the method assumes that there transition pattern occurs just before the target event.
Once this transition pattern is detected, it is possible to predict the occurrence of an
event. Using a training set, a temporal pattern cluster is defined as a neighbourhood of
the target event consisting of all points within a certain distance from the target event.
The system constructs a heterogeneous collection of temporal pattern clusters.

In [36], Weiss and Hirsh proposed a system to predict events in non-numerical
time-series (or categorical time-series). The idea is based on two steps: A) identifying
prediction patterns, in which a GA is used to evolve a grammar that defining conditions
that are correlated with a particular event, so that the user can predict the occurrence of
the event once these conditions happen, and B) generating production rules, in which
a greedy approach is used to create an ordered list of prediction patterns from the set
of candidate patterns from step A. Although the idea of event-based prediction was
tackled in this work, the proposed algorithm was designed for a very particular case
and cannot be easily generalised to standard numerical time-series as most real-world
applications require.

Time-series classification can be seen as pattern detection, for which, the aim is
to distinguish different time-series vectors and map them into different classes. In
[9], the authors proposed a new distance measure for time-series classification. The
the new distance measure is simply the weighted summation of eight standard time-
series distance measures. These are: Euclidean distance, Manhattan distance, Max-
imum Norm, Mean dissimilarity, Root mean square dissimilarity, Peak dissimilarity,
Cosine distance, and Dynamic time-warping distance. Genetic Algorithm (GA) engine
is used to optimise the weights. The new distance was tested with 1NN classification
and has been compared against standard distance measures. Results indicate that us-
ing a combination of weighted distance measures leads 1NN to produce slightly better
classification accuracy.

7

Mendivil [21] et al. proposed the use of Master-Salve parallel GA to optimise
the architecture and weights of Neural Network to model chaotic time-series. The
proposed model showed that the optimised Neural Network with a good accuracy. In
[29], Pulido et al. proposed a hybrid approach for time-series prediction by using an
ensemble neural network with fuzzy integration of responses and its optimization with
genetic algorithms.

Relatively little work has been done on event-based time-series prediction using GP.
Kattan et al. [16] proposed a learning framework based on GP to detect the occurrence
of fatigue in EMG signals. The framework uses a sliding window technique to extract
statistical features (evolved by GP) from a given training set of EMG time-series and
divide the signals into blocks. GP is encouraged to divide the training EMG blocks in
a certain way. Later, these blocks are organised into clusters based on their status (i.e.,
none-fatigue, transition-to-fatigue and fatigue). Unseen EMG signals are divided by an
evolved tree into blocks and matched with the pre-defined clusters (which were formed
during the training phase). The disadvantage of the proposed method is that it requires
an expert to manually label EMG signal blocks for the training phase.

In [13], the authors proposed an evolutionary approach based on GP to evolve min-
ing rules from time-series. The proposed method is based on discretizing the time-
series using sliding window techniques to extract features to be divided into equal-size
intervalsm and mapped into integer values to be classified into groups. The proposed
method used specialized pattern matching hardware (capable of processing 100MB/
second) to locate rule occurrences for the purpose of calculating rule fitness. The au-
thors claimed that their proposed method can be used in two versions. The first version
of the method can be used to find rules to predict specific events in a time-series. In the
second version, the user has no previous knowledge about the data and simply wants
to extract useful information (rules) from the time-series. The authors admit that their
method is not better at time-series prediction or classification than existing methods.
Instead, their main contribution lies in the flexibility of the new method and the free-
dom it affords the data miner, in that he or she can specify a rule format and quality
function suited for the application at hand.

Recently, in [37], Xie, et al. used GP to detect temporal and spatial relationships
in a time-series to detect events. The proposed algorithm used a sliding window mech-
anism that scans the given time-series sequentially. GP evolves a tree which evaluates
the data under the sliding window. If the tree’s output from two consecutive windows
is greater than some defined threshold, then an event is detected.

As can be seen, most time-series event-based detectors analyse the time-series it-
self and detect different patterns in order to label different events. Unlike other works,
in this paper, we try to understand the environment that generates time-series (rather
than the usual way of analysing patterns in a single time-series). Thus, the proposed
framework learns the patterns that indicate the occurrence of the target event in un-
seen data. To this end, GP has been used to automatically build a library of candidate
temporal features from historical time-series vectors generated from the same environ-
ment. Moreover, the proposed framework allows the user to define the target event of
interest and customise the training phase accordingly. An advantage of the proposed
framework is that it requires no previous knowledge in the problem domain and builds
the library of features automatically.

8

Proposed

Framework

Input

Time-series vectors (generated

from some environment)

User’s target event

Output

Predicted Time T

Figure 2: Overview of the framework inputs/output.

3. The Proposed Learning Framework

The proposed framework process is divided into two main phases: A) Training
phase, in which the framework extracts statistical features from training time-series
vectors (generated from the same environment) and matches them with the target event
defined by the user (the training phase can be seen as an attempt to understand the
distinct set of possible behaviours that an environment may generate in order to pre-
dict target events in unseen time-series vectors), and B) Testing phase, in which the
framework receives an unseen time-series and matches it with learnt patterns in order
to predict the time-slot where the unseen time-series is expected to show the target
event.

Before the training phase starts, the user needs to set the event that he/she wants
to predict. We will refer to this event as Ω in order to represent the target prediction.
For example, if the user is interested in predicting the position (i.e., ti the time of
occurrence) of the highest point in a time-series, then, Ω = Highest, if the user is
interested in knowing the position of the second-highest point, then, Ω = 2ndHighest,
and so on. Thus, Ω allows the user to set the target event in order to train the framework
to learn statistical features from historical time-series vectors and correlate them with
this target event. Note that Ω represents the order of the point within the entire time-
series, not its value. Figure 2 elucidates an abstracted representation of the framework.

3.1. Training Phase

The training process is broadly illustrated in Figure 3. In the training phase, the
framework first receives a collection of vectors S = {(Va)|a = 0...n}. Each Va ∈ S is
a time-series of tmax observations (collected from equidistant time-slots). Thus, ∀Va ∈
S, Va = {(xt)|t = 0...tmax}. Here, we assume that S contains a set of time-series
vectors that have been generated from the same environment. The data used to build

9

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

y

x

4- K-Mean Used to find different

clusters

3- Features are

used to project

Time-series

samples onto 2D

space

2- For each bin,

GP is used to

extract features

from its members

-1.5

-1

-0.5

0

0.5

1

1.5

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

Training
Time-
Series

-1.5

-1

-0.5

0

0.5

1

1.5

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

Training
Time-
Series

-1.5

-1

-0.5

0

0.5

1

1.5

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

Training
Time-
Series

Feature Extraction Trees

Tree yTree x

Bin 0 Bin 1 Bin 2

Bin 3 Bin 4 Bin Tmax1- Classify training set into

bins

Figure 3: Training process overview.

up the framework in the training phase is referred to as training set. At the beginning
of the training process, the framework preforms an initial screening for the training set
and classifies the vectors into tmax Bins so that Bins = {(bi)|i = 0...tmax}. This
classification is based on the Ω which is defined by the user, so that each bi contains
the time-series in which the Ω condition occurred at time t. For example, say, Ω =
Highest, then, b0 will contain time-series vectors that have the highest point in time-
slot t0 and b1 will contain time-series vectors which have the highest point in time-slot
t1, and so on. Figure 4 shows a graphic illustration of this process. Remember that
all time-series vectors in the training set have the same length. The reason that we put
the training set into different bins in this manner is to identify smaller subsets of the
training set so as to simplify the learning process and assist the learner to generalise its
knowledge. Thus, instead of letting the learner learn all of the patterns in the training
samples at once, we divide the problem into smaller sub-problems that are easier to
learn since the position of the target event in all time-series samples is aligned within
each bin.

The aim is to learn the patterns in each bi ∈ Bins and then match these patterns
with an unseen time-series in order to predict the position of the target event. The
framework further classifies the training samples in each bin into statistically indepen-
dent clusters in order to simplify the learning problem (i.e., divide and conquer strat-
egy). One may argue that the user can simply apply a single learner to learn the patterns
of time-series vectors in each bin and then pass unseen time-series to all learners using
a voting scheme to produce a prediction of the target event’s time-slot. Although, this
seems like a logical solution, however, as demonstrated in preliminary experiments,
this argument is flawed for the following reason. While the framework, after the ini-
tial screening process, organises the training set into bins and the members of each
bi ∈ Bins share a common factor which is that the Ω target event (specified by the

10

-40

-30

-20

-10

0

10

20

30

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5 Training Time-
Series

-80

-60

-40

-20

0

20

40

60

80

1 7 1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

Training Time-
Series

-1000

-500

0

500

1000

1500

2000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

1
0

3

1
0

9

11
5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

Training Time-
Series

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

1
0

3

1
0

9

11
5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

Training Time-
Series

Bin 0 Bin 1 Bin 2

Bin 3 Bin 4 Bin Tmax

-40

-30

-20

-10

0

10

20

30

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5 Training Time-
Series

-80

-60

-40

-20

0

20

40

60

80

1 7 1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

1
3

3

1
3

9

1
4

5

Training Time-
Series

Training Time-Series

Figure 4: Training Time-series samples are divided into bins based on the location of the Ω event.

user) occurs exactly at time ti, they may have completely different behaviours (i.e.,
statistical characteristics) in their trends of going up and down. For example, say, two
time-series V0 and V1 belong to b5 where the Ω = Highest. Both V0 and V1 have the
highest point occurring exactly at time-slot t5, however, as illustrated in Figure 5, the
data-points of V0 may be a plateau with a single peak at t5, while V1 may follow an
increasing trend until time t5 and then decrease until tmax. These possible variations
in behaviour of different time-series in the same bin may increase the complexity of
a single learner to learn their patterns and generalise its model. Therefore, we further
classify time-series vectors in each bin into different statistically independent clusters.
The problem, here, is that the number of these different behaviours (i.e., their distinct
statistical characteristics) is unknown. Moreover, the definition of what is considered
to be statistically similar or dissimilar is not clear. In the next sub-section, we will
explain how we solved this problem and allow the framework to automatically classify
time-series vectors into different statistically independent clusters.

3.1.1. Detect Different Behaviours
The idea of dividing the training set into smaller subsets and learning each subset

independently is not new [14, 30, 15]. Here, we used the same concept of divide-and-

11

0	

10	

20	

30	

40	

50	

60	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

S1	 in	 bin5	
S2	 in	 bin5	

Figure 5: Example of two time-series V0 and V1 share the same target event (Ω = Highest) at t5 but have
different behaviour.

conquer using GP to divide the training set automatically.
We used GP to find the number of different behaviours among the time-series vec-

tors in each bi ∈ Bins. 2 Remember that we use the word ‘behaviours’ to refer to
distinguishable statistical characteristics. Each bin is treated as an independent prob-
lem. To this end, a full GP run is executed in each bin where it will start at an initial,
randomly generated, population using the ramped half-and-half method (e.g., see [27]
and [17]). Each individual in our GP representation is composed of two trees: Feature
X and Feature Y . Each tree receives a time-series vector as its input and returns a sin-
gle value as the output. For this task, GP has been supplied with a language that allows
the discovery of different patterns in the training set. Table 1 reports the primitive set
of the GP system. The two outputs together are treated as coordinates for a time-series
in a 2-D plane. The process of mapping time-series in the training set to 2-D points is
repeated for all of the time-series vectors within each bin. Note that we take all avail-
able history into consideration by extracting features from the full time-series, rather
than a fixed-width sliding window.

Note that each tree represents a highly composite feature, i.e., a mixture of sta-
tistical features combined with constants and arithmetic operators. Once the training
time-series are projected via the two components (FeatureX and Feature Y), K-Means
clustering [18] is applied in order to group similar instances into different clusters. This
process is further illustrated in Figure 6.

During the evolutionary process, the GP projects the training time-series vectors so
as to minimise the distance between training samples that have similar statistical fea-
tures and to maximise the distance between training samples that have dissimilar fea-
tures. To this end, GP’s individuals will be used to generate projections of time-series
vectors onto 2-D space. Each individual will be ranked based on its performance, in
terms of generating separated clusters, and grouped around their centeriods. However,

2Each bin is treated as an independent problem for which our GP system will try to detect different
behaviours among its members.

12

Time-‐Series	 1	 	 Time-‐Series	 2	 	 Time-‐Series	 3	 Time-‐Series	 4	 	

Figure 6: GP evolves two trees; Feature X and Feature Y. Each tree receives time-series vector as input and
returns a single value as the output. The two outputs together are treated as coordinates for a time-series in a
2-D plane.

two key problems need to be solved to achieve this aim; A) the number of groups (or
clusters) to be formed by the K-Mean is unknown, so we need to identify the number of
clusters, and B) there is no clear definition of what is considered similar or dissimilar,
so we need to set a similarity measure. For example, an individual in the GP population
(composed of two trees according to our representation) may projects training samples
closely on the 2-D space based on their mean values alone. Should considered to be
similar?

The next subsection will explain the solutions implemented to overcome these two
problems.

3.1.2. Identify the Number of Clusters
We used a standard pattern classification approach on the outputs produced by the

two projection trees to discover regularities in the training data from each bin. In prin-
ciple, any classification method can be used with our approach. Here, we use K-Means
clustering (e.g., see [18]) to organise the training data (as re-represented by their two
projection trees) into groups. K-Mean was selected for its simplicity of implementation
and its execution speed, but other techniques might work equally well. In future work
we will explore this particular aspect in the framework.

The K-Means algorithm is a partitioning technique that normally requires the user

13

Table 1: Primitives set
Function Arity Input Output
+/, -, /, *, pow 2 Real Number Real Number
Mean, Std, Skew-
ness, Kurtosis,
Variance, Aver-
age deviation,
Entropy

1 Vector of Real Numbers Real Number

Constants 1-6 0 N/A Real Number
Training Time-
series

0 Vector of real Numbers N/A

to fix the number of clusters to be formed. However, in our case, the optimal number
of subdivisions of a problem into sub-problems is unknown. In our previous work [15],
we designed a method that set the optimal number of clusters (or more precisely, near
optimal). The idea simply relies on the fact that K-Means is a very fast algorithm. Thus,
the framework repeatedly instructs K-Means to divide the data set into K clusters,
where K = 2, 3, ...Kmax (Kmax = 20, in our implementation). At each K-Mean call,
the framework computes the clusters’ quality. The value of K that provided the best
quality clusters is then used to split the training set as the K value. The quality of
the clusters is calculated by measuring cluster separation and representativeness. Ideal
clusters are those that are separated from each other and densely grouped near their
centroids.

To measure the first quality (i.e., separation), we used a modified version of the
Davies Bouldin Index (DBI) [32]. DBI validates how well the clustering has been done
using quantities and features inherent to the dataset. DBI measures the nearness of
the clusters’ members to their centroids, divided by the distance between clusters’ cen-
troids. Thus, a small DBI index indicates well separated and closely grouped clusters.
Therefore, we favour clusters with a low DBI value.

DBI can be expressed as follows. Let Ci be the centroid of the ith cluster and dn
i be

the nth data member of the ith cluster. In addition, let the Euclidean distance between
dn

i and Ci be expressed by the function dis(dn
i , Ci). Furthermore, let K be the total

number of clusters. Finally, let the standard deviation be denoted as std(). Then,

DBI =
∑k

i=0 std[dis(d0
i , Ci), ..., dis(dn

i , Ci)]∑k
i=0

∑k
j=i ||Ci − Cj ||2

The second quality measure in our implementation is the representativeness of clus-
ters. This is simply evaluated by verifying whether the clusters contain enough mem-
bers to represent certain behaviour to match its regularities with unseen data. In certain
conditions, the projection trees may project the data in such a way that it is unlikely to
be suitable for classifying unseen data. For example, clusters that have few members
are unlikely to be representative of unseen data. To avoid pathologies of this kind, the
framework verifies that the formed clusters have a sufficiently large number of mem-
bers. In particular, it penalises the values of K that lead K-mean to form clusters in

14

Algorithm 1: Finding the optimal number of clusters in the projected space.

Project(n, treeX, treeY);1

List Qk;2

for int k=2; k ≤ K max; k++ do3

//call the K-means algorithm4

K-means(k, n);5

int separation = calculate DBI();6

if check clusters representativeness() == true then7

theta = 08

else9

theta = 100010

end11

Qk.append(separation + theta, k)12

end13

//find the best number of clusters14

int number of clusters = Qk.get min k();15

which fewer than a minimum number of members are present. In this work, the mini-
mum allowed number of members for each cluster was set to 5 samples. The selection
of this number was based on trial and error during preliminary experiments. Note that
the minimum number of members in each cluster should be based on the total number
of projected data-points. In future research, we will consider to set this variable as a
ratio of the total projected points.

More formally, the quality, Qk, of the clusters obtained when K-Means is required
to produce K clusters can be expressed as follows. Let θk be the penalty value applied
to the quality if K-Mean forms one or more clusters with fewer members than the min-
imum allowed members. If any particular cluster has fewer than a minimum number
of members we set θk = 1000, while θk = 0 if no problem is found. Furthermore, let
DBIk represent the corresponding cluster separation. Then,

Qk = DBIk + θk (1)

This θk value will decide whether the evolutionary process should discriminate
against inferior individuals that led to poor projections. Algorithm 1 illustrates the
process of identifying the optimal number of clusters in details.

After running K-Means for all values ofK in the range from 2 toKmax, we choose
the optimal K as follows:

Kbest = arg min
Q2<k<Qkmax

K (2)

The main factor that affects the optimal number of clusters is the density of the
projected samples. The method described above effectively analyses the density of
the data from this point of view. On one hand, the advantage of this approach is that it
greatly simplifies the classification of time-series behaviours. This is because evolution

15

pushes projection trees to represent the data in such a way as to optimise the perfor-
mance of the classification algorithm. Moreover, this approach does not require the
experimenter to split the training set manually, which may be difficult to do and may
require human expertise in the problem domain. Also, the approach does not impose
any significant constraints on the shape of the clusters. On the other hand, a disadvan-
tage of this approach is that the K-Means algorithm has to be executed several times per
fitness evaluation, which slows down the evolution a little. However, this only needs to
be done during evolution. Once the framework ends the training phase, it will be ready
to predict the behaviour of unseen time-series based on the projected clusters.

Once GP projects the training samples of any particular bin into separated and
representative clusters, as defined above, it is reasonable to assume that time-series
members of each cluster shares similar statistical features.

3.1.3. Fitness Evaluation
We evaluate the GP’s individuals (represented by two projection trees) by measur-

ing how well they projected the training samples into high quality clusters as defined
in Section 3.1.2. Thus, as defined in Equation 1, the fitness value of any individual is
calculated as follows:

Fitness = arg min
2<k<kmax

Qk

For each individual we store the best K value. Thus, when the framework recalls
the best-of-run individual it will simply re-project the data and run the K-Mean algo-
rithms without the need to repeat the process of identifying the best K value again.

The clusters formed by K-Means represent subsets of training examples. Each
cluster represents a particular behaviour in the bin that it belongs to.

3.1.4. Search Operators
We used tournament selection and the standard genetic operators: sub-tree crossover,

sub-tree mutation, and reproduction. Naturally, the genetic operators have to take the
multi-tree representation of individuals into account.

There are several options for applying genetic operators to a multi-tree represen-
tation: apply an operator to all trees within an individual, or use different operators
for different trees. Also, there is the option of constraining crossover to only happen
between trees at the same position in the parents or allow crossover between different
trees within the representation, and so on.

Similar to our previous work in [15], we allow crossover to freely select feature-
extraction trees. In other words, the Feature X tree of one parent can be crossed over
with either the Feature X tree or Feature Y of the other parent and vice versa.

3.2. Testing Phase
In the training phase, the framework automatically builds a library of candidate

temporal features. This is achieved by separating the training set into different bins
based on the exact time ti of occurrence of the Ω target event and then form statistically
independent clusters in each bin. In the testing phase, the framework will receive
an unseen time-series (point-by-point) in sequential order and match its patterns with
all formed clusters. Once an accurate match is found (with an acceptable confidence

16

level) the framework can indicate that the unseen time-series share similar statistical
characteristics with previously seen historical time-series vectors and it predicts that
the target event will be likely to occur at the same time-slot as these historical time-
series vectors. Remember that all time training examples within each bin bi ∈ Bins
have the Ω target event occur exactly at time ti and all training examples within the
same cluster (in any bin) have similar statistical features.

We assume that, in a real-world application, unseen observations generated from an
environment are not available beforehand. Therefore, the framework processes new ob-
servations sequentially (i.e., point-by-point as they become available) in real time. To
this end, newly collected points, {x̂0, x̂1, ..., ˆxtmax

} are stored in a vector referred to as
V̂ . The dimensionality of this vector increases as new observations are collected from
the environment, and thus, let D(V̂) be the dimension of the V̂ vector (i.e., the number
of newly collected unseen observations). At each collected observation, the framework
will calculate the average Euclidean distance between V̂ and clusters’ members (i.e.,
time-series vectors) for all clusters of all bins. Each bin will contain at least 2 clusters
and at most Kmax clusters. Note that the Euclidean distance is calculated according to
the available dimensions. For example, if D(V̂) = 4 and tmax = 10 (remember that
tmax represents the length of training time-series vectors), the framework will only
look at the first 4 dimensions in all training time-series in all clusters in all bins. This is
normal because there is no straightforward way to calculate the distance between two
vectors of different dimensionality. The average distance between the newly collected
observations and each cluster in bi is calculated as follows:

AverageDistance =
1

Nbg(clusterk)
×

Nbg(clusterk)∑
j=0

√√√√D(V̂)∑
t=0

(V̂ [x̂t]− Vj [xt])2 (3)

Here,Nbg(clusterk) is the total number of members in the kth cluster of the gth bin. The
average distance is calculated for all clusters in each bin. The cluster (in all bins) that
returns the minimum average distance (as defined in Equation 3 above) is considered
to be the one that most likely shares similar statistical features with the newly collected
observations. Thus, the framework predicts that the target event will occur at time ti
where i is determined based on the ith bin in which the cluster that returned the lowest
average distance falls in. We also calculate the confidence level of the prediction.

3.2.1. Confidence Level
The confidence level tells the framework how close the given prediction is to a

previous historical case. This allows the framework, as we will see later, to decide
whether it is confident enough to give the user a prediction, or whether it not confident
in its prediction and still needs to gather more information about the unseen time-series.

The confidence level is simply the smallest Euclidean distance between the col-
lected observations from the unseen time-series and a training sample from the cluster
that produced the lowest average distance (as defined in Equation 3) divided by the
dimensions of the V̂ . Thus, the average distance measures the similarity between the
collected observations to a previously detected behaviour. The confidence level tells

17

us how similar the collected observations are to a particular historical case. Here, the
more similar the collected observations are to a previous historical case, the more con-
fident the framework will be about its prediction. The confidence level is calculated as
follows:

confidence =
1

D(Ŝ)
× arg min

1<a<clusterk

|clusterk|∑
q=0

√√√√D(V̂)∑
t=0

(V̂ [x̂t]− Vq(clusterk)[xt])2

(4)
Here, min(clusterk) refers to the kth cluster that returned the lowest average dis-

tance in all bins while |clusterk| is the total number of time-series vectors in the kth

cluster. Moreover, Vq(clusterk) is the qth time-series vector in this kth cluster. Finally,
we divided the confidence by the dimensions of the collected observation (i.e., number
of collected observations). This is necessary to allow for a comparison of different
confidence levels from different dimensions. For example, at time t0 the framework
will receive the first observation V̂ = {x̂0} from the environment and calculates its av-
erage distance toward all clusters in all bins. The cluster that returns the lowest average
distance most likely shares similar statistical features with the collected observation.
Then, the confidence level will be calculated as denoted in Equation 4. Next, at time
t1 V̂ = {x̂0, x̂1} where V̂ will be two dimensions. Here, we divide the confidence
level by dimensions of V̂ in order to allow a comparison between the confidence levels
from t0 and t1. The framework favours lower confidence levels as this means a smaller
distance between collected observations and a previous historical case.

3.2.2. Prediction
For each collected x̂i observation from the environment, where i = {0, 1, ..., tmax},

the framework calculates a prediction t̂ of the position of the Ω target event and a confi-
dence level. Hence, starting from t = 0 (first time-slot), where V̂ = {x̂0}, a prediction
P = t̂ and confidence C are calculated. If the predicted t̂ is still in the future (i.e.,
t̂ > t, where t is the current time-slot) the framework decides to collect more observa-
tions until time t̂ assuming that there is still room to increase the prediction accuracy
by collecting more data. At each newly collected observation from the environment the
framework will calculate a prediction and its confidence level (using Equations 3 and
4). Once the framework finds a better confidence level in subsequent time-slots it will
update P and C accordingly. If the newly updated P = t̂ is still in the future, then the
framework will keep collecting new observations until time t̂. Otherwise, if the newly
updated P = t̂ has already passed, then the framework stops collecting new observa-
tions and returns the current time-slot. If P = t̂ meets time t (the current time-slot)
then the frameworks declares that the target event has occurred.

This process is explained in detail in Algorithm 2. In lines 1-3, the framework
initiates a prediction variable, confidence variable, and unseen observations’ vector.
In lines 4-22, the framework enters a loop until tmax. A new observation point x̂i is
collected from the environment and stored in vector V̂ at line 6. Then, the framework
calculates a prediction t̂ for the time-slot where the target event is likely to occur and
a confidence level for this prediction in lines 7-8, as explained previously. Lines 9-13

18

Algorithm 2: Prediction of target event’s position.

var Final confidence = MAX INTEGER;1

var Final prediction = MAX INTEGER;2

var V̂ //Vector to store new unseen observations3

repeat4

//Collect new x̂i observation from the environment and store it into V̂5

Append New Observation(x̂i, V̂);6

t̂ = Predict (V̂); //Predict the position of the target event7

C = Confidence(V̂); //Calculate the prediction’s confidence ;8

if C < Final confidence then9

//If the new confidence better than previous then update10

Final confidence = C;11

Final prediction = t̂;12

end13

if Final prediction == t then14

//The predicted time-slot meets the current time15

//Break the loop and return Final prediction;16

end17

if Final prediction < t then18

//The predicted time-slot less than the current time19

//Break the loop and return Final prediction;20

end21

until t != tmax;22

update the initial variables with the best confidence level, so far. Thus, the initial vari-
ables will be updated once the framework finds better confidence level. Lines 14-17
check whether the predicted time-slot (Final prediction) meets the current position
where the framework is paused. Remember that the framework collects unseen obser-
vations sequentially starting from the first observation x̂0 that occurred at time t = 0
until ˆxt max. At each new collected observation the frameworks tries to predict the po-
sition of the target event. In lines 18-21 the framework will break the loop in case the
predicted time-slot is less than the current time-slot and returns the Final prediction.

4. Experiments

4.1. Experiment Strategy

The key question that should be addressed in any experimental setup is: will the
given algorithm solve the problem that it intends to solve or not ?

In an abstract sense, algorithms can be viewed as mathematical formulation of a
particular problem and a set of computer instructions to solve this problem. Naturally,
all algorithms are bounded to the “No Free Lunch” theory and it is not possible to

19

Table 2: Parameters setting for Standard GP
Parameter Value
Generations 20
Population 100
Crossover 90%
Mutation 5%
Elitism 5%
Tournament size 2
Primitive set +,-,*,/, constants (1-6)

design a single approach that solves all instances in a class of problems. Ideally, one
would like to prove an algorithm’s robustness and performance mathematically. How-
ever, due to the complexity of most real-world problems a mathematical proof may
be beyond human capability. Another problem with the mathematical proof (or ana-
lytical proof) is that the implementation of the algorithm will differ depending on the
programming language and the computer architecture used to run it. Thus, even if a
perfect analytical proof of an algorithm exists it will not draw solid conclusions about
its performance across different platforms. Perhaps in the near future researchers may
invent heuristics techniques that evolve mathematical proof that take into consideration
all factors that impact algorithms’ performance and one would save time to empirically
test an algorithm. However, for now, researchers tend to design empirical experiments
that focus on a small (often very small) area in the problem space and draw some con-
clusions about their algorithms’ strengths and weaknesses. In fact, most researchers
in the area of evolutionary computation only test their algorithms empirically [31]. To
this extent, one can design insightful experiments by testing the algorithm empirically
without any particular theoretical assumption and let the evidence drive the conclusions
[31].

Our experiments are designed to test the behaviour of the proposed framework
under different circumstances. The experiments are divided into two parts. In the first
part, experiments are carried out on artificially generated data where we can control the
difficultly of the problem and simulate different levels of hardness. In the second part,
we test the algorithm with a real-world problem. The reason for testing the framework
on artificially generated data is to build an understanding of the framework’s behaviour
under a controlled environment where we can analyse the effect of each variable on
the performance. Furthermore, the artificially generated data can represent (to some
extent) a group of real-world applications. Nevertheless, testing the framework with
real-world data will show its performance in situations where the data can be stochas-
tic and controlled by a real environment, which is difficult to generate artificially. In
addition, testing the framework with real-world data will demonstrate the potential of
our framework.

4.2. Algorithms Implementation and Settings

We compared the proposed framework with a standard GP [27], standard Radial
Basis Functions Networks (RBFN) [4], Gaussian Process (or sometimes called Krig-

20

Table 3: Parameters setting in the proposed framework
Parameter Value
Generations 20
Population 100
Crossover 90%
Mutation 5%
Elitism 5%
Tournament size 2
Max Clusters 20
Clusters min al-
lowed members

5

ing) [3], Linear Regression model (LR) [3], and Polynomial Regression model (PR)
[3]. The reason we chose these models is that they are some of the most widely used
algorithms for time-series applications. In order to ensure a fair comparison, before ap-
plying the GP, RBFN, Kriging, LR and PR the training data are classified into different
bins (similar to our approach) and we let each algorithm learn the patterns in each bin
separately.

All parameters are chosen experimentally in such a way as to improve the conver-
gence rate of all algorithms in comparisons. Table 3 illustrates the settings used in our
proposed framework.

For standard GP, the system solves the problem as a standard symbolic regression
problem. The GP receives the time-series vectors in each bin (each bin is solved as an
independent problem) and evolves a function f(x) in such a way as to minimise the
error between the evolved function’s outputs and the time-series vectors within a bin.
Once GP evolves a generalised prediction function for each bin, unseen observations
are treated in same manner as in the proposed framework (see Section 3.2.2). Thus,
each unseen observation x̂i is passed to each evolved function in each bin. The func-
tion that produces the lowest prediction error returns a prediction of the position of the
Ω target event based on samples in its associated bin, and the prediction error as confi-
dence level. Here, lower prediction error indicates higher confidence level. The same
procedure as described in Algorithm 2 follows. The settings used for standard GP are
descried in Table 2.

Similarly, for the RBFN, Kriging, LR and PR a prediction model is trained using
the time-series vectors in each bin so as to minimise the training error. Again, at each
x̂i unseen observations are passed to trained RBFN models in each bin. The model
that produces the lowest prediction error returns a prediction of the position of the Ω
target event as it is labelled on its associated bin, and the prediction error as confidence
level. The same procedure described in Algorithm 2 is followed. For RBFN, we used
the standard notation described in [22].

4.3. Artificially Generated Data

Experiments on artificially generated data were sampled from two different models
as denoted below.

21

1. S(xi) = sin(ri)× ci.
2. S(xi) = tan(ri)× ci.

Here, ri ∈ R = {r0, r1, ...rtmax}, where R is an ordered list of random num-
bers uniformly generated from the interval [0, 5] and ci ∈ C = {c0, c1, ...ctmax

}
where C is an ordered list of constants starting from random constant from the in-
terval [1, 7] and decreases in steps of 0.01. Thus, changing the R and C lists will
result in completely different time-series. We used each model to generate 2000 time-
series vectors for the training set and another 100 time-series vectors for the testing
set. Both training and testing sets contain completely different samples. We used
variations of the Sin and Tan wave functions to test the framework ability to differen-
tiate between similar periodic behaviours. Figures 7 and 8 illustrate some examples of
time-series generated using the models above. For each model, from the two models
listed above, we tested the algorithm in a full experimental set. For each experimental
set, of each model, we tested the framework under different values of tmax. Namely,
tmax = {5, 10, 15, 20, 25}, where for each value we tested the model through 20 inde-
pendent runs. Thus, in total, for the experimental test on artificially generated data, we
ran the framework 2 × 5 × 20 different times (this is 2 models, 5tmax values, and 20
independent runs for each model-tmax combination). Remember that tmax defines the
length of the generated time-series. It is also the number of bins the framework will
generate to distribute the training samples within according to the positions of their
target events. Note that we focused the experiments on small values of tmax. This is to
stress the framework ability to detect the Ω target event in limited time-slots.

For all experiments, we set the target event as Ω = Highest. Thus, we train the
framework to predict the position of the highest point in unseen time-series. This is
not an easy task given the periodic nature of the generated time-series. The reason for
using the Sin and Tan wave functions is that they have different forms of periodic
behaviours. In the Sin function, peaks tend to be clear and smooth (as illustrated in
Figure 7). The difficulty of this task is discovering the position of the highest peak
among several regular peaks in the time-series. Whereas the Tan function generates
rather small variations in the time-series with several sharp positive and negative peaks
(see Figure 8). The difficulty of this task is detecting this sudden variation in the data
without a clear warning before. Also, the framework needs to detect the highest peak
among all these variations. Note that the framework has no knowledge about the func-
tion used to generate the data. However, it tries to learn the environment’s possible
behaviours and to match new observations with previously detected behaviours.

4.3.1. Results
In each run, we calculated the Mean, Max, Standard Deviation, and Median of

Hit rate and Accuracy. The Hit rate shows the percentage of times where thaat each
algorithm managed to correctly predict the position of the target event (highest peak in
our case), while the Accuracy shows how far predictions are from the real time-slot of
the target event. The accuracy is calculated as follows. Let Closeness be an equation to
measure how close the given prediction is to the real position of the time event. Thus,

Closeness = 1− prediction error

max possible error

22

-‐2	

-‐1.5	

-‐1	

-‐0.5	

0	

0.5	

1	

1.5	

2	

2.5	

1	 17
	

33
	

49
	

65
	

81
	

97
	

11
3	

12
9	

14
5	

16
1	

17
7	

19
3	

20
9	

22
5	

24
1	

25
7	

27
3	

28
9	

Series1	

-‐3	

-‐2	

-‐1	

0	

1	

2	

3	

4	

1	 17
	

33
	

49
	

65
	

81
	

97
	

11
3	

12
9	

14
5	

16
1	

17
7	

19
3	

20
9	

22
5	

24
1	

25
7	

27
3	

28
9	

Series1	

-‐2	

-‐1.5	

-‐1	

-‐0.5	

0	

0.5	

1	

1.5	

2	

2.5	

1	 17
	

33
	

49
	

65
	

81
	

97
	

11
3	

12
9	

14
5	

16
1	

17
7	

19
3	

20
9	

22
5	

24
1	

25
7	

27
3	

28
9	

Series1	

-‐4	

-‐3	

-‐2	

-‐1	

0	

1	

2	

3	

4	

5	

1	 17
	

33
	

49
	

65
	

81
	

97
	

11
3	

12
9	

14
5	

16
1	

17
7	

19
3	

20
9	

22
5	

24
1	

25
7	

27
3	

28
9	

Series1	

Figure 7: Example of time-series generated using variation of the Sin function.

where prediction error is the summation of the absolute difference errors be-
tween the predictor’s output and the real position of the target event on the testing set,
while max possible error is the worst possible prediction that may happen for each
target event. This is calculated as follows:

max possible error =

{
T(target event)i ifT(target event)i > tmax − T (target event)i

tmax − T (target event)i Otherwise
T (target event)i is the position (i.e., time slot) where the target event has occurred in
the unseen time-series.

Using the above equations the accuracy of predictions is calculated as follows:

Accuracy =
√
Closeness×Hit rate (5)

Table 4 summarises the results of 600 independent runs for the Sin function. This is 20
independent runs for each system under each tmax value. As can be seen in the Table,
the proposed framework (referred to as GP-Clusters in the results Tables) has achieved
higher numbers in most experimental cases in terms of mean, max and median.

The only cases where the proposed framework has failed to achieve the highest
median is in tmax = 20 and 25 against RBFN and LR. Also, it failed to achieve the
highest max in tmax = 15.

Now, if we focus our attention on the Hit rate we will find that the proposed frame-
work achieved a better mean than all competitors with margins ranging from 16% to
48% on average. In addition, it achieved better max Hit rate (i.e., maximum Hit rate
across the whole 20 runs) with margins ranging from−5% to 44%. It is notable that the
highest Hit rate is 55% of the testing cases. This is because the problem of predicting
the exact position of a target event is too difficult. Therefore, we do not discard non-hit
predictions and consider them completely wrong because they still can give an indica-
tion to the user. The prediction accuracy, as explained above, shows how far non-hit

23

-‐250	

-‐200	

-‐150	

-‐100	

-‐50	

0	

50	

100	

150	

1	 17
	

33
	

49
	

65
	

81
	

97
	

11
3	

12
9	

14
5	

16
1	

17
7	

19
3	

20
9	

22
5	

24
1	

25
7	

27
3	

28
9	

Series1	

-‐800	

-‐600	

-‐400	

-‐200	

0	

200	

400	

1	 17
	

33
	

49
	

65
	

81
	

97
	

11
3	

12
9	

14
5	

16
1	

17
7	

19
3	

20
9	

22
5	

24
1	

25
7	

27
3	

28
9	

Series1	

-‐500	

-‐400	

-‐300	

-‐200	

-‐100	

0	

100	

1	 17
	

33
	

49
	

65
	

81
	

97
	

11
3	

12
9	

14
5	

16
1	

17
7	

19
3	

20
9	

22
5	

24
1	

25
7	

27
3	

28
9	

Series1	

-‐800	

-‐600	

-‐400	

-‐200	

0	

200	

400	

600	

1	 18
	

35
	

52
	

69
	

86
	

10
3	

12
0	

13
7	

15
4	

17
1	

18
8	

20
5	

22
2	

23
9	

25
6	

27
3	

29
0	

Series1	

Figure 8: Example of time-series generated using variation of the Tan function.

predictions are far from the real time of the target event. If we now turn our attention
to accuracy results in Table 4 it is clear that our proposed framework has higher mean,
max, and median accuracy than those of the competitors in all test cases. To further
verify the significance of our results in Table 4 a Kolmogorov-Smirnov two-sample test
[26] has been performed on the results for all pairs of systems under test and for all five
test tmax values. Table 5 reports the P-value for the tests. As one can see, in 16 out
of 25 cases our framework is statistically significantly superior to its competitors at the
standard 5% significance level.

From the results in Table 4, we can see that the proposed framework comes in first
place in most cases, then standard GP in second place, and finally RBFN in third place.

Table 6 summarises the results of 600 independent runs for the Tan function (i.e.,
the second model). This is 20 independent runs for each system under each tmax value.
It is clear from the table that our proposed algorithm is better than its competitors in
most cases in both Hit rate and prediction’s accuracies. When tmax = 15 the frame-
work achieved a similar median as standard GP, Kirging, and LR. When tmax = 25
the framework was outperformed by the RBFN in terms of max accuracy and achieved
similar Hit rate as the Kriging. Note that, unlike with the Sin function, the Tan
generates time-series with sharp and irregular peaks; therefore, it is difficult to detect
the target event efficiently. However, the proposed framework achieves higher mean
Hit rate on most test cases with margins ranging from 11% to 43%. It also achieves a
higher max Hit rate in all test cases with margins ranging from −0.02% to 19%.

Again, we verified the significance of our results in Table 6 using a Kolmogorov-
Smirnov two-sample test [26] on the results for all pairs of systems under test and for
all five test tmax values. Table 7 reports the P-value for the tests. In 12 cases our
system is statistically significantly superior to its competitors.

In this subsection, we illustrated the framework performance in detecting a pre-

24

Ta
bl

e
4:

Su
m

m
ar

y
of

3
0
0

ru
ns

w
ith

th
e

S
in

fu
nc

tio
n

(2
0

ru
ns

fo
re

ac
h

sy
st

em
un

de
re

ac
h

T
m

a
x

va
lu

e.
)

G
P-

C
lu

st
er

s
SG

P
R

B
FN

K
ri

gi
ng

L
R

PR
H

it
A

cc
ur

ac
y

H
it

A
cc

ur
ac

y
H

it
A

cc
ur

ac
y

H
it

A
cc

ur
ac

y
H

it
A

cc
ur

ac
y

H
it

A
cc

ur
ac

y
t m

a
x

=
5

M
ea

n
0.

33
0.

46
0.

23
0.

37
0.

19
0.

31
0.

19
0.

30
0.

21
0.

33
0.

22
0.

33
M

ax
0.

55
0.

67
0.

45
0.

59
0.

45
0.

54
0.

45
0.

57
0.

55
0.

62
0.

45
0.

53
St

D
0.

13
0.

12
0.

10
0.

11
0.

12
0.

15
0.

13
0.

16
0.

11
0.

12
0.

12
0.

15
M

ed
ia

n
0.

32
0.

48
0.

18
0.

34
0.

18
0.

33
0.

18
0.

32
0.

18
0.

35
0.

27
0.

37
t m

a
x

=
10

M
ea

n
0.

18
0.

30
0.

10
0.

19
0.

09
0.

17
0.

15
0.

25
0.

09
0.

16
0.

12
0.

22
M

ax
0.

45
0.

56
0.

45
0.

52
0.

36
0.

44
0.

36
0.

49
0.

45
0.

53
0.

36
0.

49
St

D
0.

13
0.

16
0.

12
0.

16
0.

10
0.

15
0.

12
0.

15
0.

11
0.

16
0.

09
0.

14
M

ed
ia

n
0.

18
0.

32
0.

09
0.

22
0.

09
0.

20
0.

14
0.

27
0.

09
0.

20
0.

09
0.

24
t m

a
x

=
15

M
ea

n
0.

15
0.

24
0.

05
0.

11
0.

06
0.

12
0.

06
0.

13
0.

05
0.

12
0.

10
0.

17
M

ax
0.

45
0.

60
0.

18
0.

33
0.

27
0.

41
0.

27
0.

42
0.

27
0.

43
0.

55
0.

63
St

D
0.

13
0.

18
0.

06
0.

13
0.

08
0.

15
0.

08
0.

15
0.

07
0.

14
0.

13
0.

17
M

ed
ia

n
0.

18
0.

31
0.

00
0.

00
0.

00
0.

00
0.

05
0.

10
0.

00
0.

00
0.

09
0.

21
t m

a
x

=
20

M
ea

n
0.

15
0.

26
0.

04
0.

08
0.

05
0.

14
0.

06
0.

13
0.

07
0.

15
0.

03
0.

07
M

ax
0.

55
0.

65
0.

18
0.

32
0.

18
0.

35
0.

18
0.

35
0.

18
0.

36
0.

18
0.

34
St

D
0.

16
0.

20
0.

06
0.

12
0.

05
0.

13
0.

07
0.

13
0.

07
0.

15
0.

05
0.

11
M

ed
ia

n
0.

09
0.

25
0.

00
0.

00
0.

09
0.

21
0.

05
0.

10
0.

09
0.

23
0.

00
0.

00
t m

a
x

=
25

M
ea

n
0.

15
0.

26
0.

04
0.

08
0.

05
0.

14
0.

03
0.

06
0.

02
0.

06
0.

06
0.

13
M

ax
0.

55
0.

65
0.

18
0.

32
0.

18
0.

35
0.

18
0.

34
0.

09
0.

26
0.

36
0.

43
St

D
0.

16
0.

20
0.

06
0.

12
0.

05
0.

13
0.

05
0.

12
0.

04
0.

11
0.

09
0.

14
M

ed
ia

n
0.

09
0.

25
0.

00
0.

00
0.

09
0.

21
0.

00
0.

00
0.

00
0.

00
0.

05
0.

10
*B

ol
d

nu
m

be
rs

ar
e

th
e

hi
gh

es
t

25

Table 5: Kolmogorov-Smirnov two samples statistical test for Sin function’s results
GP-
Clusters
Vs SGP

GP-
Clusters
Vs RBFN

GP-
Clusters
Vs Krig-
ing

GP-
Clusters
Vs LR

GP-
Clusters
Vs PR

tmax = 5 0.1349 0.0232 0.0082 0.0026 0.0232
tmax = 10 1.83E-04 7.25E-04 1.53E-06 7.25E-04 1.53E-06
tmax = 15 2.32E-02 0.0591 0.0591 0.0232 0.771
tmax = 20 0.0026 0.1349 0.0082 0.4973 0.0026
tmax = 25 0.0591 0.0232 0.771 0.0232 0.1349
*Bold numbers are lower than 5% statistically significant

defined target event in a periodic unseen time-series. The results are encouraging in
the sense that the framework can actually predict the position of the target event and
in those cases where it fails to give an exact prediction it is not too far from the real
position. In the next subsection we will present results of experiments conducted on
real-world data.

4.4. Real-World Data

For the real-world problem, we used data from Google Trends service [11]. Google
Trends is a free service provided by Google offering data about the search terms that
people entered into Google search engine. The service provides free downloadable
historical time-series data about any keyword. It, also, offers the flexibility to restrict
the search by country.

One of the uses of Google Trends is for E-Marketing managers to monitor the
internet to see how often people type certain keywords related to their products at
different times over the year. Using this information, E-Marketing managers can decide
the best time to release their marketing campaigns so their advertisements coincide with
people’s searchers and eventually achieve higher hit rates.

For the purpose of our experiments, we imported time-series data about people’s
searches for the keywords; Mobile Phone, Holidays, and Cinema and we restricted the
search to get data from USA, USA and UK, respectively. All imported data from Google
Trends represent the weekly frequencies of searches of the keywords mentioned above
in Google since January 2004 until May 2012. There are 439 data points. Figures
9, 10, and 11 visually illustrate the data used in the experiments. Data were divided
into chunks of 5 data points, ending with 87 different chunks (or different time-series
vectors). To this end, we used the first 67 time-series vectors to train the framework
(and the other competitors) and the last 20 as the testing set. Here, the aim is to predict
the position of the highest peak in the future (treating the testing set as unseen weekly
observations in the future) so as to help mobile companies to select the best time to
advertise their new offers, travel agencies to predict the best time of releasing holidays
packages, or to help cinema companies to preview new shows at the most appropriate
time.

26

Ta
bl

e
6:

Su
m

m
ar

y
of

6
0
0

ru
ns

w
ith

th
e

T
a
n

fu
nc

tio
n

(2
0

ru
ns

fo
re

ac
h

sy
st

em
un

de
re

ac
h

t m
a

x
va

lu
e.

)
G

P-
C

lu
st

er
s

SG
P

R
B

FN
K

ri
gi

ng
L

R
PR

H
it

A
cc

ur
cy

H
it

A
cc

ur
cy

H
it

A
cc

ur
cy

H
it

A
cc

ur
cy

H
it

A
cc

ur
cy

H
it

A
cc

ur
cy

t m
a
x

=
5

M
ea

n
0.

27
0.

40
0.

21
0.

34
0.

18
0.

30
0.

22
0.

36
0.

15
0.

26
0.

19
0.

31
M

ax
0.

55
0.

63
0.

45
0.

58
0.

45
0.

57
0.

36
0.

51
0.

27
0.

43
0.

45
0.

58
St

D
0.

13
0.

15
0.

10
0.

12
0.

12
0.

16
0.

10
0.

13
0.

10
0.

15
0.

12
0.

16
M

ed
ia

n
0.

27
0.

44
0.

18
0.

34
0.

18
0.

31
0.

23
0.

38
0.

18
0.

30
0.

18
0.

32
t m

a
x

=
10

M
ea

n
0.

23
0.

36
0.

10
0.

19
0.

10
0.

19
0.

09
0.

17
0.

10
0.

19
0.

10
0.

20
M

ax
0.

45
0.

58
0.

36
0.

47
0.

27
0.

45
0.

27
0.

46
0.

27
0.

41
0.

27
0.

45
St

D
0.

12
0.

15
0.

10
0.

16
0.

09
0.

15
0.

11
0.

17
0.

08
0.

14
0.

08
0.

13
M

ed
ia

n
0.

23
0.

37
0.

09
0.

21
0.

09
0.

22
0.

09
0.

21
0.

09
0.

23
0.

09
0.

25
t m

a
x

=
15

M
ea

n
0.

11
0.

20
0.

06
0.

14
0.

08
0.

16
0.

08
0.

18
0.

06
0.

14
0.

04
0.

10
M

ax
0.

36
0.

53
0.

18
0.

35
0.

18
0.

35
0.

27
0.

46
0.

18
0.

36
0.

18
0.

33
St

D
0.

12
0.

19
0.

07
0.

14
0.

07
0.

14
0.

07
0.

14
0.

07
0.

14
0.

05
0.

13
M

ed
ia

n
0.

09
0.

22
0.

09
0.

21
0.

09
0.

23
0.

09
0.

21
0.

09
0.

18
0.

00
0.

00
t m

a
x

=
20

M
ea

n
0.

10
0.

20
0.

06
0.

13
0.

04
0.

09
0.

05
0.

13
0.

07
0.

16
0.

05
0.

11
M

ax
0.

27
0.

44
0.

27
0.

43
0.

18
0.

34
0.

18
0.

36
0.

18
0.

38
0.

18
0.

34
St

D
0.

09
0.

15
0.

08
0.

16
0.

05
0.

13
0.

05
0.

13
0.

06
0.

13
0.

06
0.

13
M

ed
ia

n
0.

09
0.

22
0.

00
0.

00
0.

00
0.

00
0.

09
0.

20
0.

09
0.

20
0.

00
0.

00
t m

a
x

=
25

M
ea

n
0.

07
0.

16
0.

03
0.

07
0.

04
0.

08
0.

05
0.

12
0.

04
0.

09
0.

01
0.

03
M

ax
0.

18
0.

37
0.

09
0.

26
0.

27
0.

38
0.

18
0.

33
0.

09
0.

26
0.

09
0.

25
St

D
0.

06
0.

13
0.

04
0.

11
0.

07
0.

12
0.

06
0.

13
0.

05
0.

11
0.

03
0.

08
M

ed
ia

n
0.

09
0.

21
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
0.

00
*B

ol
d

nu
m

be
rs

ar
e

th
e

hi
gh

es
t

27

Table 7: Kolmogorov-Smirnov two samples statistical test for Tan function’s results
GP-
Clusters
Vs SGP

GP-
Clusters
Vs RBFN

GP-
Clusters
Vs Krig-
ing

GP-
Clusters
Vs LR

GP-
Clusters
Vs PR

tmax = 5 0.0082 0.0232 0.1349 0.0026 0.0232
tmax = 10 7.25E-04 2.60E-03 7.25E-04 7.25E-04 4.15E-05
tmax = 15 0.4973 0.4973 0.4973 0.4973 0.2753
tmax = 20 0.4973 0.1349 0.771 0.4973 0.2753
tmax = 25 0.1349 0.0591 0.771 0.1349 0.0026
*Bold numbers are lower than 5% statistically significant

0	

20	

40	

60	

80	

100	

120	

1	 7	 13
	

19
	

25
	

31
	

37
	

43
	

49
	

55
	

61
	

67
	

73
	

79
	

85
	

91
	

97
	

10
3	

10
9	

11
5	

12
1	

12
7	

13
3	

13
9	

14
5	

15
1	

15
7	

16
3	

16
9	

17
5	

18
1	

18
7	

19
3	

19
9	

20
5	

21
1	

21
7	

22
3	

22
9	

23
5	

24
1	

24
7	

25
3	

25
9	

26
5	

27
1	

27
7	

28
3	

28
9	

29
5	

30
1	

30
7	

31
3	

31
9	

32
5	

33
1	

33
7	

34
3	

34
9	

35
5	

36
1	

36
7	

37
3	

37
9	

38
5	

39
1	

39
7	

40
3	

40
9	

41
5	

42
1	

42
7	

43
3	

Google	 Inshights	 Data	 (Keyword:	 Mobile)	

Web	 Search	 Interest:	
mobile;United	 States;	 2004	 -‐	
present	

Figure 9: Google Trends Data used in the experiments.
Keyword: Mobile Phone.
Restirction: United State.
Dates: Since January 2004 - May 2012.

4.4.1. Results
Table 8 illustrates the results of the runs. In total, we ran the three systems 300

times. This is 20 times for each system under each keyword. We report the same
measures as in the previous set of experiments. The prediction accuracy is calculated
in Equation 5. As can be seen in the table, it is amazing that our proposed frame-
work outperformed all competitors in 2 out of 3 test cases significantly. In terms of
Hit rates, our framework achieved the highest mean in all 2 keywords (namely, Hol-
idays and Cinema) with margins ranging from −6% to 25% and it achieved highest
max Hit rates with margins ranging from−5% to 27%. It is also interesting to see that
the framework precisely predicted the target event in 56% of the testing cases under
Holidays keyword. As in the previous experimental set, results were verified using
Kolmogorov-Smirnov two samples in Table 9. Our results are statistically superior
in 10 out of 15 cases. It is interesting to see the framework doing well in real-world
situation. These results are encouraging in the sense that good predictions have been
achieved and further improvement is still possible.

Interestingly, when the framework obtained results near to standard GP, RBFN and
Kriging in the Mobile testing case the corresponding P-Value shows P > 5%. One
might expect that performing more runs would eventually statistically confirm the su-

28

0	

20	

40	

60	

80	

100	

120	

1	 10
	

19
	

28
	

37
	

46
	

55
	

64
	

73
	

82
	

91
	

10
0	

10
9	

11
8	

12
7	

13
6	

14
5	

15
4	

16
3	

17
2	

18
1	

19
0	

19
9	

20
8	

21
7	

22
6	

23
5	

24
4	

25
3	

26
2	

27
1	

28
0	

28
9	

29
8	

30
7	

31
6	

32
5	

33
4	

34
3	

35
2	

36
1	

37
0	

37
9	

38
8	

39
7	

40
6	

41
5	

42
4	

43
3	

Googl	 Insights	 Data	 (Keyword:	 Holidays)	

Web	 Search	 Interest:	
holidays;United	 States;	
2004	 -‐	 present	

Figure 10: Google Trends Data used in the experiments.
Keyword: Holidays.
Restirction: United State.
Dates: Since January 2004 - May 2012.

0	

20	

40	

60	

80	

100	

120	

1	 8	 15
	

22
	

29
	

36
	

43
	

50
	

57
	

64
	

71
	

78
	

85
	

92
	

99
	

10
6	

11
3	

12
0	

12
7	

13
4	

14
1	

14
8	

15
5	

16
2	

16
9	

17
6	

18
3	

19
0	

19
7	

20
4	

21
1	

21
8	

22
5	

23
2	

23
9	

24
6	

25
3	

26
0	

26
7	

27
4	

28
1	

28
8	

29
5	

30
2	

30
9	

31
6	

32
3	

33
0	

33
7	

34
4	

35
1	

35
8	

36
5	

37
2	

37
9	

38
6	

39
3	

40
0	

40
7	

41
4	

42
1	

42
8	

43
5	

Google	 Insights	 Data	 (Keyword:	 Cinema)	

Web	 Search	 Interest:	
cinema;	 England	 (United	
Kingdom);	 2004	 -‐	 present	

Figure 11: Google Trends Data used in the experiments.
Keyword: Cinema.
Restirction: United Kingdom.
Dates: Since January 2004 - May 2012.

periority of our framework in more cases.
In the next section, we will analyse different aspects of the framework and look

closely at the predictions shedding light on the dynamics of the framework’s proce-
dures.

5. Analysis

Due to the dynamic nature of evolutionary algorithms, experiments render distri-
butions not numbers [31]. It is no longer sufficient to report the mean of best-of-run
values over a finite number of runs and to perform an off-the-shelf and statistical test to
conclude that the presented work is robust. It is important to build an understanding of
why the algorithm performs well on the testing cases and poor in other cases (assuming
the experimental design was broad enough) in order to gain more knowledge about the
problem it is meant to solve and about the behaviour of the algorithm itself. This will
direct future works and help readers to start from where others ended.

29

Ta
bl

e
8:

Su
m

m
ar

y
of

3
0
0

ru
ns

w
ith

th
e

G
oo

gl
e

Tr
en

ds
da

ta
(2

0
ru

ns
fo

re
ac

h
sy

st
em

un
de

re
ac

h
ke

yw
or

d.
)

G
P-

C
lu

st
er

s
SG

P
R

B
FN

K
ri

gi
ng

L
R

PR
H

it
A

cc
ur

ac
y

H
it

A
cc

ur
ac

y
H

it
A

cc
ur

ac
y

H
it

A
cc

ur
ac

y
H

it
A

cc
ur

ac
y

H
it

A
cc

ur
ac

y
M

ob
ile

-U
S

M
ea

n
0.

22
0.

37
0.

23
0.

37
0.

24
0.

36
0.

19
0.

33
0.

12
0.

22
0.

19
0.

32
M

ax
0.

43
0.

55
0.

38
0.

49
0.

38
0.

53
0.

33
0.

45
0.

19
0.

35
0.

38
0.

49
St

D
0.

10
0.

09
0.

09
0.

07
0.

09
0.

09
0.

08
0.

08
0.

06
0.

09
0.

07
0.

07
M

ed
ia

n
0.

19
0.

34
0.

19
0.

36
0.

24
0.

35
0.

19
0.

34
0.

12
0.

22
0.

19
0.

28
H

ol
id

ay
s

-U
S

M
ea

n
0.

32
0.

42
0.

19
0.

31
0.

17
0.

30
0.

18
0.

29
0.

20
0.

33
0.

24
0.

35
M

ax
0.

56
0.

59
0.

38
0.

43
0.

44
0.

53
0.

38
0.

51
0.

44
0.

55
0.

38
0.

45
St

D
0.

14
0.

12
0.

10
0.

08
0.

09
0.

11
0.

11
0.

13
0.

08
0.

07
0.

12
0.

08
M

ed
ia

n
0.

34
0.

44
0.

13
0.

27
0.

16
0.

29
0.

13
0.

27
0.

19
0.

32
0.

31
0.

40
C

in
em

a
-U

K
M

ea
n

0.
24

0.
40

0.
18

0.
33

0.
21

0.
35

0.
19

0.
33

0.
15

0.
28

0.
17

0.
30

M
ax

0.
31

0.
45

0.
32

0.
43

0.
29

0.
42

0.
27

0.
41

0.
23

0.
38

0.
19

0.
34

St
D

0.
04

0.
04

0.
05

0.
04

0.
05

0.
05

0.
05

0.
05

0.
05

0.
07

0.
02

0.
02

M
ed

ia
n

0.
23

0.
39

0.
18

0.
34

0.
20

0.
36

0.
19

0.
33

0.
15

0.
27

0.
16

0.
29

*B
ol

d
nu

m
be

rs
ar

e
th

e
hi

gh
es

t

30

Table 9: Kolmogorov-Smirnov two samples statistical test for Google Insight results.
GP-
Clusters
Vs SGP

GP-
Clusters
Vs RBFN

GP-
Clusters
Vs Krig-
ing

GP-
Clusters
Vs LR

GP-
Clusters
Vs PR

Moblie - US 0.0026 0.4973 0.2753 1.53E-06 0.0026
Holidays - US 0.771 2.60E-03 0.4973 0.0591 0.0082
Cenima - UK 2.49E-07 0.0232 1.83E-04 1.53E-06 4.74E-09
*Bold numbers are lower than 5% statistically significant

0	

5	

10	

15	

20	

25	

T5	 T10	 T15	 T20	 T25	

N
um

be
r	 o

f	 C
lu
st
er
s	

Time	 Slots	 	

Average	 Number	 of	 Clusters	

Avg.	 Number	 of	 Clusters	 (Tan)	

Avg.	 Number	 of	 Clusters	 (Sin)	

Figure 12: Average number of clusters within all bins.

5.1. Clusters

Figure 12 illustrates the average number of clusters in all bins for the 20 runs un-
der each tmax value for the Tan function. This sheds light on the number of distinct
behaviours that the framework managed to detect. Interestingly, the number of clusters
decreases as the tmax value increases. One would expect that when the length of time-
series increases the number of possible behaviours would increase as well. However,
it is the opposite case as illustrated in Figure 12. When we looked closer at the formed
clusters in order to understand this phenomenon (e.g., see Figure 13), we found that
the number of projected points in each bin decreases as the value of tmax increases
(remember that GP collapses each training time-series sample into a 2D data-point, see
Section 3.1). This is because we fixed the number of training samples in all exper-
iments to 2000 samples. The framework distributes the training samples on all bins
according to their target event positions (see Section 3). Hence, when tmax increases
the 2000 training samples will be distributed on more bins. This observation prompts
an interesting question regarding the ideal training technique that we should use for
the framework. Obviously, when tmax values increases, one needs more training sam-
ples to learn as much as possible about the environment. However, in many real-world
applications, historical data may not be easily available. In future work, we will con-
sider the use of sampling and compression techniques to balance the training set to be
appropriate for the tmax value.

31

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

'(" '&" !" &" (")" *" %!"

!"#$%""&"'("

$"+,-./01."

'&"

!"

&"

("

)"

*"

%!"

%&"

%("

%)"

!" !#$" %" %#$"

!"#$%"&"')"

2"+,-./01.""

'!#*"

'!#)"

'!#("

'!#&"

!"

!#&"

!#("

!#)"

!#*"

'(" '&" !" &" (")" *" %!"

!"#$%"&"*("

3"+,-./01."

!"

&"

("

)"

*"

%!"

%&"

'4" '&" '%" !" %" &" 4"

!"#$%"&"*)"

%4"+,-./01."

-‐25	

-‐20	

-‐15	

-‐10	

-‐5	

0	

5	

10	

15	

20	

25	

-‐1.5	 -‐1	 -‐0.5	 0	 0.5	 1	 1.5	

T	 max	 =	 5	

19	 Clusters	

Figure 13: Examples of projected training time-series by GP on 2D space.

5.2. Learn from Evolution

In Figure 14, we show the average proportions of GP functions used in each genera-
tion in one of the experimental sets across 20 runs (tmax = 5 under the Tan function).
While GP is known to be sensitive to its inputs (meaning that one node can change a
tree’s output significantly) it is hard to indicate which functions are most important.
However, the figure gives an indication of the evolution’s preferences in terms of func-
tions (or sub tree) favoured by the selection process. This can shed some light on the
least favoured functions and help to exclude them from the GP primitive set in future
experiments, so as to decrease the search space without affecting the solutions’ quality.

It is clear from Figure 14 that the four arithmetic operators receive the highest
proportions. This is natural because they are located on top of evolved trees where
statistical functions are treated as inputs for the arithmetic operators. We noticed that

32

median

5

10

15

20

MedianMeanAvgDevStdDevVarianceSkew Kurtosis Entropy PlusMinseMulDivconstant1constant2constant3

0

0.05

0.1

0.15

0.2

0.25

Functions

Generations

Pr
op

ot
io

n

Figure 14: Average proportions of each function used in each generation.
Results collected from 20 runs using tmax = 5 under the Tan function.

the selection of the Div operator decreased gradually as the evolution progresses. Now,
looking at the proportions of statistical functions we can see that Mean and AvgDev
(or average deviation) dominate most trees and their proportions increase slowly as the
evolution progress. Then, Median and Kurtosis receiving a considerable attention by
evolution. The least favoured, as indicated by Figure 14, is the StdDev (or standard
deviation).

Because the performance of the evolved programs are good, it would be interesting
to know what it actually does and learn from the evolutionary process. Fortunately,
most evolved programs are small enough to be understandable as illustrated in Figure
15. For example, we can learn that something as simple as f(x) = Entropy(V)

Average Devition(V)+
Skew(V) and f(y) = Median(V) can extract statistical features from the set of time-
series vectors in such a way that distinguishes their behaviours (i.e., their trends of
going up and down).

6. Conclusion and Future Work

In our opinion, the goodness of an algorithm should not be measured only by its
results or how far it is from other state-of-the-art techniques; rather, it should also be
evaluated by its novelty and how far it will allow other researchers to build on it in
order to achieve a truly intelligent system. If an ideal time-series event detector system
were to exist, it would return a full prediction of what the environment will generate
before it actually generates anything. While this ideal system does not yet exist, in this
work, we present a framework which we feel can be one step closer to this system.
The framework uses GP to predict the position of target events (defined by the user)

33

Tree x

Tree y

Tree x

Tree y
Tree x

Tree y

Program 1 Program 2 Program 3

Figure 15: Examples of evolved programs to project time-series into 2D space.

in a time-series. The proposed framework learns the behaviour of the environment
(that generates the time-series data) by analysing historical time-series vectors. GP
is used to evolve programs that distinguish different behaviours in the training time-
series vectors and learns their patterns. Based on the learnt knowledge, it compares
the unseen observation-points (coming from the environment) with previously learnt
patterns in order to predict the time when the unseen time-series is expected to show
the target event.

This framework can be seen as a trial to analyse time-series events from the gen-
erating environment’s perspective rather than analysing a single time-series. In real-
world applications, the environment can be anything, including but not limited to stock
markets, buyer-seller negotiations or prices of oiland gas or electricity in international
markets. The framework automatically builds a library of of candidate temporal fea-
tures, using divide and conquer strategy, by separating the training set into different
bins based on the exact time ti of occurrence of the target event (which is defined by
the user) and then further classifies each bin’s members into statistically independent
clusters.

The proposed framework has many potential applications. For example, as shown
in the experiments section (see Section 4.4), the proposed framework can be used to
analyse time-series data (from Google Trends) of keyword searches on the Internet and
predict the next peak so as to assist marketing managers in deciding the best time to
release their digital marketing campaigns.

The advantage of the proposed framework is that it divides the training samples
into subsets based on their distinguished behaviours automatically without previous
knowledge of the problem domain. Moreover, the proposed framework allows the user
to define a particular target event of interest.

Although, experimental results on artificially generated data and real-world prob-
lem demonstrated the superiority of the framework over a standard GP and RBFN, it is
fair to report that the proposed framework suffers from several disadvantages that we
would like to address in future research. Firstly, the framework requires large training
samples in order to divide them into bins based on the position of the target event (see
Section 3.1 for details). Secondly, the framework, in its current realisation, predicts

34

the target event upon its occurrence. It can not give an early warning prediction of the
target event. The framework does not guarantee 100% correctness in its predictions. In-
stead, it aims to improve the odds in its user’s favour. The framework can significantly
enhance the user’s productivity in finding patterns and monitoring the environment.

The following interesting questions arose from our analysis of the experimental
results. We would like to address these issues in future research.

1. We would like to explore the idea of artificially generating training examples
(i.e., time-series vectors in our case) using sampling techniques in order to over-
come the limitation of requiring a large number of training examples.

2. In this work, we assume a static environment that generates a finite set of be-
haviours. In the future, we would like to test the system with dynamic environ-
ments.

References

[1] A. Agapitos, M. Dyson, J. Kovalchuk, and S. M. Lucas. On the genetic program-
ming of time-series predictors for supply chain management. In GECCO ’08:
Proceedings of the 10th annual conference on Genetic and evolutionary compu-
tation, 2008.

[2] A. Agapitos, M. O’Neill, and A. Brabazon. Evolving seasonal forecasting mod-
els with genetic programming for pricing weather-derivatives. In Applications of
Evolutionary Computing, EvoApplications 2012: EvoCOMNET, EvoCOMPLEX,
EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM, EvoPAR, EvoRISK, EvoS-
TIM, EvoSTOC, 11-13 Apr. 2011.

[3] J. R. Anderson, R. S. Michalski, R. S. Michalski, T. M. Mitchell, et al. Ma-
chine learning: An artificial intelligence approach, volume 2. Morgan Kaufmann,
1986.

[4] A. G. Bors. Introduction of the radial basis function (rbf) networks. Technical
report, Department of Computer Science, University of York, UK, 2001.

[5] P. Brockwell and R. Davis. Time series: theory and methods. springer Verlag,
2009.

[6] H. Cao, L. Kang, Y. Chen, and J. Yu. Evolutionary modeling of systems of or-
dinary differential equations with genetic programming. Genetic Programming
and Evolvable Machines, 1(4):309–337, Oct. 2000.

[7] C. Chatfield. The analysis of time series. Texts in statistical science. Chapman
Hall, London [u.a.], 5. ed edition, 1996.

[8] Y. Chen, B. Yang, Q. Meng, Y. Zhao, and A. Abraham. Time-series forecast-
ing using a system of ordinary differential equations. Information Sciences,
181(1):106–114, 2011.

35

[9] D. Dohare and V. S. Devi. Combination of similarity measures for time series
classification using genetic algorithms. In IEEE Congress on Evolutionary Com-
putation, pages 401–408. IEEE, 2011.

[10] M. Forouzanfar, A. Doustmohammadi, S. Hasanzadeh, and H. Shakouri G. Trans-
port energy demand forecast using multi-level genetic programming. Applied
Energy, 91(1):496–503, 2012.

[11] Google. Google insights, June 2012. http://www.google.com/insights/.

[12] V. Guralnik and J. Srivastava. Event detection from time series data. In KDD,
pages 33–42, 1999.

[13] M. Hetland and P. Strom. Evolutionary rule mining in time series databases.
Machine Learning, 58:107–125, 2005.

[14] D. Jackson. The performance of a selection architecture for genetic programming.
In Proceedings of the 11th European Conference on Genetic Programming, Eu-
roGP 2008, volume 4971 of LNCS, pages 170–181, Naples, 26-28 Mar. 2008.
Springer.

[15] A. Kattan, A. Agapitos, and R. Poli. Unsupervised problem decomposition using
genetic programming. In A. I. Esparcia-Alczar, A. Ekrt, S. Silva, S. Dignum, and
A. S. Etaner-Uyar, editors, EuroGP, volume 6021 of Lecture Notes in Computer
Science, pages 122–133. Springer, 2010.

[16] A. Kattan, M. Al-Mulla, F. Sepulveda, and R. Poli. Detecting localised muscle
fatigue during isometric contraction using genetic programming. In A. D. Cor-
reia, A. C. Rosa, and K. Madani, editors, IJCCI, pages 292–297. INSTICC Press,
2009.

[17] J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge Massachusetts, May 1994.

[18] C. Langin. Introduction to data mining. Scalable Computing: Practice and Ex-
perience, 9(4), 2008.

[19] G. Y. Lee. Genetic recursive regression for modeling and forecasting real-world
chaotic time series. In L. Spector, W. B. Langdon, U.-M. O’Reilly, and P. J.
Angeline, editors, Advances in Genetic Programming 3, chapter 17, pages 401–
423. MIT Press, Cambridge, MA, USA, June 1999.

[20] A. Manning. Monopsony in motion: Imperfect competition in labor markets.
Princeton Univ Pr, 2003.

[21] S. G. Mendivil, O. Castillo, and P. Melin. Optimization of artificial neural net-
work architectures for time series prediction using parallel genetic algorithms. In
O. Castillo, P. Melin, J. Kacprzyk, and W. Pedrycz, editors, Soft Computing for
Hybrid Intelligent Systems, volume 154 of Studies in Computational Intelligence,
pages 387–399. Springer Berlin Heidelberg, 2008.

36

[22] A. Moraglio and A. Kattan. Geometric generalisation of surrogate model based
optimisation to combinatorial spaces. In EvoCop, Lecture Notes in Computer
Science. Springer, 2011.

[23] F. Nogales and A. Conejo. Electricity price forecasting through transfer function
models. Journal of the Operational Research Society, 57(4):350–356, 2005.

[24] S. S. I. of Computer Science. The trading agent competition, June 2012.
http://www.sics.se/tac.

[25] W. Panyaworayan and G. Wuetschner. Time series prediction using a recursive
algorithm of a combination of genetic programming and constant optimization.
In A. M. Barry, editor, GECCO 2002: Proceedings of the Bird of a Feather Work-
shops, Genetic and Evolutionary Computation Conference, pages 101–107, New
York, 8 July 2002. AAAI.

[26] J. A. Peacock. Two-dimensional goodness-of-fit testing in astronomy. Royal
Astronomical Society, Monthly Notices, 202:615–627, 1983.

[27] R. Poli, W. B. Langdon, and N. F. McPhee. A Field Guide to Genetic Program-
ming. Published via http://lulu.com, 2008. (With contributions by J. R.
Koza).

[28] R. J. Povinelli and X. Feng. A new temporal pattern identification method for
characterization and prediction of complex time series events. IEEE Trans.
Knowl. Data Eng., 15(2):339–352, 2003.

[29] M. Pulido, P. Melin, and O. Castillo. Genetic optimization of ensemble neural
networks for complex time series prediction. In Neural Networks (IJCNN), The
2011 International Joint Conference on, pages 202 –206, 31 2011-aug. 5 2011.

[30] J. Rosca, M. P. Johnson, and P. Maes. Evolutionary Speciation for Problem De-
composition, 1996. Available via Citeseer.

[31] R. Ruiz. Review of ”experimental methods for the analysis of optimization algo-
rithms”, thomas bartz-beielstein, marco chiarandini, lu’s paquete, mike preuss.
springer, 2010. European Journal of Operational Research, 214(2):453–456,
2011.

[32] F. Sepulveda, M. Meckes, and B. Conway. Cluster separation index suggests use-
fulness of non-motor EEG channels in detecting wrist movement direction inten-
tion. In Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent
Systems, pages 943–947, Singapore. IEEE Press.

[33] E. Tsang, P. Yung, and J. Li. EDDIE-automation, a decision support tool for
financial forecasting. Decision Support Systems, 37(4):559–565, 2004.

[34] W. Wang, Z. Hidvégi, and A. Whinston. Shill bidding in multi-round online auc-
tions. In System Sciences, 2002. HICSS. Proceedings of the 35th Annual Hawaii
International Conference on, pages 7–pp. IEEE, 2002.

37

[35] W. W. S. Wei. Time series analysis - univariate and multivariate methods.
Addison-Wesley, 1989.

[36] G. M. Weiss and H. Hirsh. Learning to predict rare events in categorical time-
series data. Technical report, In Proceedings of the Fourth International Confer-
ence on Knowledge Discovery and Data Mining, AAAI Press, Menlo Park, CA,
1998.

[37] F. Xie, A. Song, and V. Ciesielski. Event detection in time series by genetic
programming. In X. Li, editor, Proceedings of the 2012 IEEE Congress on Evo-
lutionary Computation, pages 2507–2514, Brisbane, Australia, 10-15 June 2012.

[38] F. Yang, M. Li, A. Huang, and J. Li. Forecasting time series with genetic program-
ming based on least square method. Journal of Systems Science and Complexity,
27(1):117–129, 2014.

38

