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ABSTRACT

The problem of setting suitable parameters for population-based
Evolutionary Algorithms (EA) is not new. However, the process
of tuning the EA parameters is still challenging, since their sensi-
tivity to the given problem is highly non-linear. This paper pro-
poses a framework that uses Particle Swarm Optimisation (PSO)
based on Surrogate Modelling (SM) to optimise population-based
EA parameters before they can be applied to solve problems. The
proposed framework is comprised of two components; PSO that
searches the parameters space and a Radial Basis Function Net-
works (RBFN) surrogate model to guide it. The main advantage
of our model is that it optimises the EA parameters in a way that
ensures that EA searches the problem within a limited number of
evaluations. Experiments with three different benchmark prob-
lems demonstrate that our proposed framework managed to assist
a Genetic Algorithm (GA) in order to optimise its parameters and
achieves better solutions than the use of Standard PSO without sur-
rogate assistance to optimise the GA parameters, Standard GA that
is applied directly to the problem with fixed parameters settings,
Standard 1+1 Evolutionary Strategy (ES) applied directly to the
problem and simple Random Search.

Categories and Subject Descriptors
1.2 [Artificial Intelligence]; 1.2.8 [Heuristic Methods]

General Terms
Algorithms

Keywords

Parameters Tuning,Particle Swarm Optimisation, Evolutionary Al-
gorithms, Surrogate, Radial Basis Function Networks.

1. INTRODUCTION

The problem of setting suitable parameters for population-based
EAs has been the focus of an active research area in the past few
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decades [1]. However, tuning the EA parameters is still a chal-
lenging task since their sensitivity to the given problem is highly
non-linear. A common parameter setting strategy involves running
the algorithm multiple times with different settings, using a human-
in-the-loop approach, in an attempt to fine-tune the EA approach to
the given problem [1]. This can be a wearisome process; therefore,
oftentimes, one is tempted to use default settings or settings in the
literature that address similar problems.

The problem of parameter tuning can be seen as a classical op-
timisation problem. However, it requires a considerable amount
of computational resources especially when the fitness function is
computationally expensive (which is the case with most real-world
problems). In such a circumstance, the process of tuning the pa-
rameters can become infeasible. Furthermore, in order to validate
the goodness of a parameters set one may need to run the EA sev-
eral times due to their stochastic nature. Thus, it is attractive to
automate this process. One solution is to use “parameters sweep"
strategy [2]. However, a proper parameters sweep can easily grow
exponentially due to its combinatorial search space size. Another
existing solution in the literature is to use an optimisation method as
a top-level (or meta-search) [3]. This scenario raises an interesting
question of how to tune the parameters of the top-level optimiser?
This question does not seem to have any obvious answer [1]. Back
to the computational intensity problem, one possible solution to
reduce the computational cost of the top-level EA when optimis-
ing the low-level EA’s parameters is to use approximation models,
which are known as surrogate models, that can predict the fitness
or objective function evaluation [4]. This can expedite the search
by generating many candidate solutions in the search space at a
smaller evaluation cost. The selection of these models is based on
two main assumptions: (a) that their evaluation cost of the fitness
function is much cheaper in comparison to the original evaluation
(i.e., running the EA to validate the goodness of a parameters set),
and (b) that they can successfully approximate the search space of
the problem.

In this paper, we propose a framework that is based on PSO and
RBEN surrogate to automatically optimise the EA parameters. The
contributions of this paper are twofold:

1. We propose the use of PSO as a meta-search for other EA
techniques. To the best of our knowledge, PSO-based on SM
has never been used to search population-based EA’s param-
eters space.

2. Unlike other parameters optimisation methods, the proposed
framework ensures that EA searches the problem within a
limited number of evaluations. Thus, our framework sug-
gests the best settings under a pre-defined maximum number
of evaluations.



Experiments with three different benchmark problems demonstrate
that our proposed framework managed to assist GA to optimise its
parameters and achieves better solutions than other standard sys-
tems (details in Section 5).

The remaining of this paper is organised as follows: Section 2
briefly presents some of the previous work that is related to EA pa-
rameters optimisation via surrogate and PSO based surrogate sys-
tems. Section 3 details our proposed framework. Experiments’
settings and results are presented Sections 4 and 5, respectively.
Section 6 present some discussion on the results. Finally, Section 7
presents some conclusive remarks and future work.

2. RELATED WORK

2.1 Parameter Optimisation Techniques

In terms of performance or the convergence of the EA, the pa-
rameter tuning of the evolutionary algorithms showed promising
results. Eiben et al. [5] described two kinds of strategies for pa-
rameter setting in the evolutionary algorithms. In parameter con-
trol, the parameters of an algorithm are constantly updated during a
single run according to a certain control strategy. Conversely, in the
parameter tuning approach, for a particular run of an algorithm, a
single set of parameters is used and its performance is assessed ac-
cording to some performance measure. A comparison of parameter
tuning methods can be found in [6, 1]. Preuss et al [7] demonstrated
the efficacy of surrogate models in tuning the parameters of the op-
timisation algorithm. Rudolph et al. [8] proposed a two-layered
optimisation mechanism to optimise the meta models at two differ-
ent levels; at level-1, surrogate model is used based on true objec-
tive function calculations and at level-2 another surrogate model is
used as meta-model. In [1], the author reviewed parameters tuning
mechanisms at different stages of EA and pointed out that there is
no universal strategy with which to tune the internal parameters of
an evolutionary algorithm for all types of applications.

None of the above work defines a limit of evaluations before op-
timising the EA parameters. The proposed framework suggests the
best settings under a pre-defined maximum number of evaluations.

2.2 PSO-Based Surrogate

For computationally expensive optimisation, various meta-models
for fitness approximation are proposed to accelerate the conver-
gence of PSO. Bird et al [9] used least square regression to estimate
the local fitness function and location of peak is predicted which is
later used in PSO. They claimed that, which such an approach, the
convergence speed is greatly improved. Gorshy et al [10] applied
the quadratic surface method to approximate the fitness function
and applied it in the ship design. Seirra and Coello [11] used var-
ious types of fitness approximation techniques in multi-objective
particle swarm optimisation. Further, Robert et al. [12] used inex-
pensive surrogate models in multi-objective particle swarm optimi-
sation to reduce the computational cost. He used kriging method
for fitness approximation in engineering design problems. Parno
et al. [13] has proposed a framework to incorporate the surrogate
models into particle swarm optimisation. They showed that surro-
gate model can be built by using the objective function values that
are already available during optimisation process and this model
can guide the optimisation algorithm in the search space.

To the best of our knowledge, PSO based on SM has never been
used before as meta-models to optimise the parameters for the EA.
In this paper, we explore the potentials of PSO-Surrogate as meta
search for population-based EAs’ parameters.

3. PROPOSED META SEARCH

As mentioned previously, PSO has been used as a top-level search
to explore the parameters space for population-based EA, and RBFN
surrogate is used to guide the search. Note that the landscape that is
defined by the EA’s parameters have the same unknown properties
as the problem given to the EA itself. An interesting future study is
to investigate the relationship between the problem’s difficulty that
suggested the use of an EA and the sensitivity of the parameters
settings.

Here, PSO automatically adjusts the size of population and num-
ber of generations in the EA system as well as the search operators’
rates in such a way as to keep the whole process under control and
facilitate the best possible results. For this task, the EA is associ-
ated with a numerical set of weights W = {wo, u1 }, which is used
to identify its settings. Hence, uo is used to set the size of popula-
tion and number of generations, while u; is used to set the search
operators’ rates. During the optimisation process of the particles,
the system applies a constraint to ensure the validity of all settings.
Thus, to prevent the PSO from setting a large number for the pop-
ulation size and the number of generations (that potentially may be
computationally infeasible), the total number of evaluations should
not be allowed to exceed a predefined maximum number of evalu-
ations. Hence,

Population_Size X Number_of_Generations < mazx_explorations

The “max _explorations" is the upper limit of evaluations for the
EA system. The reason why this upper limit of evaluations is set is
to allow the user to define an upper boundary of the computational
costs before using this framework to tune the parameters. Here, the
framework will search for the optimal settings under this boundary.

Each u; € W is a real number from the interval (0,1). EA
parameters are calculated as follows:

o Population—max_explorations X ug

maz_explorations

e Number_of_Generations = .
Population

o (Crossover_rate = u1
o Mutation_rate =1 — uq

The weights of the EA parameters form a two-dimensional vec-
tor V' = {wo, u1 }, which in turn corresponds to an individual/particle
in a swarm population Pps, = {Vb, V1, ..., V,, }, where n is the size
of the swarm. Hence, swarm population (i.e., collection of weights)
is used to optimise the parameters of the EA systems in such a way
as to find the optimal solution under a limited number of evalua-
tions.

3.1 PSO Parameters Optimisation

The proposed framework works as follows. First, the system
randomly initialises a swarm population of size n, according to the
constraint mentioned in the previous section. For each particle V; €
P,so the system runs the EA by using the settings from the V;. This
raises the question of how to evaluate a set of EA’s settings? In
other words, what it the fitness measure of the PSO. In this work,
we run the EA several times and report the best evolved solution
across all of runs. The formal notation of the PSO fitness measure
is defined as follows:

Fitness = argmaxp _ v,) EA(Ppso[Vi]), Vi € Ppso (1)

Here, EA(Ppos[Vi]) refers to the function that runs the EA using
the parameters set V; in the P, population and returns the fitness
of the best solution.



Once the system evaluates all V; particles in Pps,, it allocates
the best particle (i.e., the one which provided the best adjustment
to the EA in such a way as to return the best solution) as a centre
and all other particles in the P,s, move toward the centre by using
a velocity value V;[u;]. Velocities were adjusted according to their
difference from the best known location, as in [14], for each u; in
Vi particle as follows:

if(centrey; < Vi[ui])

Vilus] = Vi[ui] — vFactor x randy x [|centre,, — Vi[ui]|]

else if(centre,, > Vilus])

Vi[us] = Vi[ui] + vFactor x randy X [|centre,, — Vi[ui]|]
@3]

Thus, each particle in P, remembers the globally best position
(which is found by a member in the flock). Each particle moves
into the two-dimensional weights space (or parameters space). The
“vFactor” is a predefined constant and used to set the max step of
any V; particle in the P,s,. Preliminary experiments show that the
best value for vFactor is 0.1. The particles optimisation process
can be envisaged as birds flock flying in a 2D grid: as each particle
moves into the 2D weights space, its weights uo and u; are adjusted
in a simple manner: uo moves right or left by adding or subtracting
arandom amount weighted by the parameter vFactor and, similarly,
w1 moves up or down. At each move, the system checks whether
the particles’ values satisfy the constraint mentioned in Section 3.
If the particles do not satisfy these constraints, then a new rand;
value is placed in Equation 2 until the constraint is satisfied. The
process of velocity adjustment iterates until the maximum number
of moves.

Algorithm 1 broadly outlines the whole process. In line 1, the
system generates Pps,, of size n particles, according to the con-
straint defined in Section 3. In line 2, the system defines the max
_explore limit of evaluations. In lines 3 - 14, the system iterates
over P,s,. For each V;, it calculates the parameters set, namely,
population size, number of generations, and search operators’ rates
(lines 6 - 9). Thereafter, the system runs the EA based on its new
settings and stores fitness of the best solution found by the EA into
Best_Sol_Fitness (line 11). In line 12, the best V; treated as a
centre and all other individuals in P,s, update their velocity val-
ues (as explained in Equation 2) in order to move toward the centre
(line 13). As previously stated, running the EA multiple times can
be computationally expensive, therefore we replace (line 11) with
RBFN surrogate to speed up the PSO search.

The size of the swarm population and number of moves is related
to the problem difficulty (more details on the parameters’ setting
are provided in Section 4).

3.2 Radial Basis Function Networks Surrogate

There are a number of known approaches to learn a function that
belongs to a certain class of functions from existing data-points '
(i.e., finding a function in that class that interpolates and best fits
the data-points according to some criteria). Some of these include
Genetic Programming (GP), RBFN Interpolation, Artificial Neural
Networks and Gaussian Process Regression (also known as Krig-
ing) [4].

GP is a powerful method for approximating unknown functions.
However, one major drawback of GP is its well-known expensive
learning process. Gaussian Process Regression is a very power-
ful method with a solid theoretical foundation, which not only can
make a rational extrapolation about the location of the global opti-
mum, but also gives an interval of confidence about the prediction

"Data-point is the pair of solution and its real fitness value.

Algorithm 1: PSO tuning EA settings

1 Random-Generate-Swarm(V[uo, u1],n)
2 Integer max_explore;

repeat
foreach V;do
Parameters_Set:

Number_of _Gen = max_explore/Pop_Size;
Crossover = u1;

Mutation =1 — uq;

10 }

// Here we replace the real
evaluation with a cheap RBFN

3
4
5
6 { Pop_Size = uo X max_explore;
7
8
9

surrogate
11 Best_Sol_Fitness = Run_FEA(Parameters_>Set);
12 centreyest|uo, u1] = Best_Sol_Fitness

13 Update-All(Vy, ..., Vy)

14 Juntil max-moves ;

made. RBFN Interpolation is conceptually simpler than Gaussian
Process Regression and can extrapolate the global optimum from
the known data-points. In this paper, we focus on RBFNs as surro-
gate models.

RBFNs can be seen as variants of an artificial neural network
that uses radial basis functions (RBF) as activation functions [15].
Typically, RBEN consists of three layers: input, hidden, and output
layer. The relationship between the input and the hidden layer is
determined by the RBF activation function. The nodes in the output
layer usually perform a simple summation for the linear weights of
these activations. RBFNs have successfully been used in function
approximation, time series prediction, and control [15].

A RBF is a real-valued function ¢ : R™ — R, its value depends
only on the distance from a known point in the search space c,
called centre, so that ¢(Vy) = ¢(||Vg — ¢||). The point ¢ is a
parameter of the function and the point V; is the query point in the
PSO to be estimated. The norm is usually Euclidean, so ||V — ¢||
is the Euclidean distance between c and V.

There are several types of RBF functions, including: Gaussian,
Multiquadric, Inverse Quadratic and Inverse Multiquadric. In this
paper we use the Gaussian function of the form:

$(Va) = exp(=B||Vy — e|*)

where 8 > 0 is the width parameter. Radial basis functions are
typically used to build function approximations of the form:

N
y(Ve) = wo + Y wi ¢(|[Vg — cil)) 3
i=1

Thus, y(Vy) is used to approximate the real-objective function,
(i.e., running the EA multiple times with particular parameters set
in our case), when evaluating a PSO particle. The approximating
function y(V;) is represented as a sum of NV radial basis functions,
each associated with a different centre ¢;, a different width 3;, and
weighted by an appropriate coefficient w;, plus a bias term wo. In
principle, any continuous function can be approximated with arbi-
trary accuracy by a sum of this form, if a sufficiently large number
N of radial basis functions is used [15]. The bias wg can be set to



the mean of the values of the training set fitnesses that are used to
train the surrogate model, or set to 0.

Training the RBFNs requires three parameters to be found: (a)
the centres c;, (b) the values of w; in such a way that the predictions
on the training set minimises the errors and, finally, (¢) the RBF
width parameter 3.

The centres can be chosen to coincide with the training set and
evaluate them with the real fitness evaluation. The (3 value can
be either fixed for all N linear RBFs (global) or it can be cus-
tomised for each RBF (local). In this work, we set the 3 value
as 1/D? where D is the maximum pairwise distance between the
query point and all of the points in the training set. The value of
[ controls the radius of each RBF (spreading on the search space
to cover all the other centres), so that each known function value at
a centre can potentially contribute significantly to the prediction of
the function value of any point in space.

Finally, the weights vector can be calculated by solving the sys-
tem of N simultaneous linear equations in w; by requiring that the
unknown function exactly predicts the training. Formally, we have:

y(Vi):bi,i:L..N.

Setting g;; = ¢(||V; —V;]|), the system can be written in a matrix
form as Gw = b where b is a vector of the true fitness values of
the data-points that have been used to train the surrogate. The ma-
trix G is non-singular, because we guarantee that the points V; are
distinct, so the weights w can be solved by simple linear algebra:

w=G'b

The value of the bias term wq in Equation 3 is set to the mean
value of the training set real fitnesses, i.e., the mean of vector b.
In this way, the predicted function value of a point which is out of
reach of the influence of all centres is by default set to the average
of their function values.

Once the RBF parameters are determined, the model is ready to

estimate the fitness of any unseen point. Thus, the fitness EA(Ppos[Vy])

(defined in Equation 1) of a query point Vj in the search space is
predicted by weighted linear combination of:

EA(Ppos[Va]) = wo + 3231, [wi * ¢(d(Vy, ¢))]

where, w; is a vector of weights that has been calculated during
the training phase and ¢ is the kernel function which is defined in
Equation 3. Finally, d(V;, ¢;) is the distance between the new point
V, and the training set points c;.

3.3 Surrogate Implementation

Similar to traditional procedure of surrogate model based opti-
misation (SMBO) [4], the framework constructs an initial surrogate
model by using the real fitness measure (defined in Equation 1) on
a small set of solutions and replaces the real fitness measure in Al-
gorithm 1 - line 11. The remaining expensive objective function
evaluations out of a limited budget are applied to candidate solu-
tions in which the surrogate model predicts to have promising per-
formance. The process interleaves search of the surrogate model
to obtain its optimum, evaluation of the optimum solution of the
model by using the expensive objective function, and update of the
surrogate model with the new point.

Here, we used PSO to optimise the surrogate model. We refer
to this version of the PSO as cheap PSO, because it uses a com-
putationally inexpensive surrogate model. The best solution that
the cheap PSO has found is then compared with the best point of
the training set (that are used to train the surrogate). If the newly
suggested point is better than than the best existing point in the
training set, then the system successfully managed to extrapolate

from the training set. It updates the training set with the new point
and re-trains the surrogate. Otherwise, the system adds a new ran-
dom point to the training set, in a step to collect more information
about the under-sampled search space. This procedure coincides
with our main hypothesis that RBFN surrogate can successfully
approximate the parameters search space.

Note that the role of surrogate is to infer the location of a promis-
ing solution, and it is not directly applied to the original problem
with the expensive objective function. This is feasible because the
computational cost of a complete run of the EA on the surrogate
model is negligible (i.e., in the order of few seconds) with regard to
the cost of evaluating a solution using the expensive objective func-
tion of the problem (in the order of minutes, hours, or even days,
depending on the problem).

4. EXPERIMENT SETUP

Experiments have been conducted in order to validate our frame-
work. The main aim of the experiments is to evaluate the per-
formance of the framework and to assess its behaviour under a
variety of circumstances. In principle, the proposed framework
can optimise the parameters of any population-based EA. In this
paper, we felt that GA is a good example with which to demon-
strate the capabilities of our framework. The experiments included
testing the framework on three different problems, namely, NK-
Landscape [16] (unimodal problem), Hamming Centres [17], (mul-
timodal problem), and three different continuous optimisation prob-
lems. For each problem we tested all systems under different chro-
mosomes size m.

We compared the framework in terms of the best evolved solu-
tion with (a) Standard PSO without surrogate assistance to optimise
the GA parameters, in order to verify whether surrogate can acutely
find the best setting within a limited number of explorations in the
parameters space, (b) Standard GA applied directly to the problem
with fixed parameters settings to check whether parameters tuning
has added any extra advantages to the search, (¢) Standard 1+1 Evo-
lutionary Strategy (ES) applied directly to the problem, to compare
our framework performance against a standard search algorithm,
and, finally, (d) simple Random parameters generator, to prove that
surrogate sampling is better than random search in suggesting data-
points in the search space.

Since the problem complexity is related to the the size of the
GA chromosome (i.e., m value), here, we relate the value of max
_explorations (the upper limit of evaluations as explained in Sec-
tion 3) to problem complexity. Thus, max_explorations = m?2.
So, essentially our aim is to find the best solution to the problem the
algorithm can produce in linear time out of an exponential number
of candidate solutions in the problem space. Table 1 illustrates the
settings used in our experiments for standard GA with fixed param-
eters and 1+1 ES.

Table 1: Settings used in the experiments

Operator Standard GA with fixed set- | 1+1 ES
tings
Mutation 30% 100%
Crossover 70% 0%
Tournament size | 2 N/A
Population Size | m 1
Generations m m?




As for the PSO without surrogate assistance, the size of Py,
is equal to ’"152 and the number of moves for each particle in the
swarm is 5. Thus, each particle in the P, effectively evaluates 5
different parameters sets in a process of tuning the GA parameters.
Note that the total number of evaluations performed by the GA in
any settings of V; € P, will not exceed the max_explorations
value. Each particle runs the GA 10 times to validate the goodness
of the V; parameters set. Thus, each particle will effectively run the
GA 10 x 5 times. Hence, to allow a fair comparison, when each
individual in the P, runs the GA systems, we run both standard
GA with fixed settings and 1+1 ES exactly 10 x 5. Obviously, this
approach is not completely fair because the PSO, here, has the ad-
vantage of exploring different parameters sets while both standard
GA and 1+1 ES searches the problem using a fixed parameters.
However, it is also unfair to give them fewer number of problem
evaluations than PSO. There is no clear method of comparing these
algorithms.

Our proposed framework, PSO that uses a RBFN surrogate, re-
ceived exactly the same number of parameters explorations "11?)2 X
5, and the same PSO fitness function to measure the parameters sets
(i.e., running the GA 10 times and report the best fitness). The dif-
ference here is that PSO particles are evaluated using cheap RBFN
surrogate rather than a complete real fitness measure (i.e., running
the GA 10 times with each parameters set). Therefore, we were
generous with the the cheap PSO settings. The number of parti-
cles in the cheap PSO is 10m and number of moves was set also
to 10m. Once the surrogate suggests a new promising point in the
parameters space, it evaluates it using the real fitness measure and
updates the surrogate model. Our aim is to utilise the RBFN sur-
rogate to optimise the GA parameters using very small number of
explorations in the parameters space (i.e., 521—’(’; =m)

S. RESULTS

5.1 Continuous Optimisation

In our experiments, we evaluated the framework using three dif-
ferent well-known benchmark problems. Namely, Rastrigin func-
tion, Dixson & Price function and, finally, Michalewics function
[18]. The reason for choosing these three functions in particular
is because they represent different landscapes with different levels
of difficulty. The Rastrigin function has the overall structure of a
hyper-parabola with many bumps, whereas the other two functions
have a smoother, albeit deceptive, landscape (i.e., the best optima
are on different sides of the search space). For each function, we
investigate the performance of the system under m = 20, 30, 40,
and 50. Each system was tested using 20 independent runs. Table 2
summarises the results of 1200 runs (20 independent runs for each
system for each m value). It is clear that our framework comes
in the first place in almost all cases with significant performance
margins. The model failed to outperform the standard PSO only
in two cases (when m = 20 and 30 in the Michalewics function).
Note the the Std of our framework shows different levels of stabil-
ity. This outcome is expected because PSO particles are searching
for the best settings for the GA in the parameters space. Thus, de-
pending on the PSO’s initial population, each V; particle explores
different area in the search space, and thus, each V; tries different
settings which is not necessary to the best in a process of optimis-
ing the solution. However, in standard GA and 1+1 ES we used the
same settings in all runs and thus, they tend to have more stability
as shown by their Std.

5.2 NK-Landscape
NK-Landscape was established by Stuart Kauffman in [19]. The

fitness of a gene could depend solely on its own state. At its most
complex, the fitness of a gene could depend on the state of all oth-
ers. Thus, there are N genes in which each gene’s fitness depends
of the state of K others.

We investigated the performance of our framework under differ-
ent values of N. Namely, we used N = 20, 30, and 40. For each
N value we tested three different K values K = % (easy prob-
lem), & (hard problem), and % + 5 (very hard problem). > For
each IV, K combination we tested the system using 20 independent
runs using the settings mentioned in Section 4.

Table 3 summarises the results of 900 independent runs (20 in-
dependent runs for each system for each N,K combination). As
can be seen in the table, PSO-Surrogate managed to adjust the GA
parameters in a way that makes the search achieves better results.
It is clear that PSO-Surrogate is ranked first place both in terms
of average (i.e., average of best solutions in the 20 runs) and best
(i.e., best achieved solution across the entire 20 runs) in almost all
test cases. The only time PSO-Surrogate did not manage to out-
perform PSO (that tunes the parameters directly without surrogate
assistance) and Standard GA was when the problem was too easy
(N =20 and K = 4) so all algorithms can perform equally well.

5.3 Hamming Centres

Hamming centres is an NP-hard problem defined in [17] as fol-
lows. Lets a set S of k; binary strings, where ¢ € {1,2...I}, each
of length m, and r is a positive integer. The objective is to find
m—Dbits string y such that for every string k; in S, the Hamming
distance, H (ki,y) <.

We investigated the performance of our proposed framework un-
der different values of m—bits (m = 50, 75, 100, and 125). For
each m value we performed 20 independent runs for each system.
The size of the set S was 20 in all experiments. The fitness value
was measured as the number of cases that string y satisfied the con-
dition of H(k;,y) < r. Thus, the optimal solution is equal to the
size of S (which is 20 in our case). The r value was set to \/m.
Table 4 illustrates the results of 400 runs (20 independent runs for
each system for each m value). Clearly, PSO-Surrogate comes in
first in all test cases in both average fitness (in 20 runs) and best
fitness across all runs. Surprisingly, standard GA with fixed param-
eters settings outperformed PSO (applied directly to tune the GA
parameters) in two test cases, namely, when m = 100, 125. This
suggests that the allowed explorations in the parameters space is
very low (i.e., m trials only where m is the GA chromosomes size)
and it is not enough to allow PSO to converge to an optimum so-
lution in this particular problem. This is also an indication that the
use of SM has assisted the PSO in exploring potential areas in the
parameters space.

6. DISCUSSION

It is a well-known fact in the field of optimisation that it is very
difficult to determine an efficient optimisation algorithm for all
types of functions of optimisation problems. The same is true
for our proposed PSO-surrogate method. We have reported op-
timisation results for three different types of functions,including
three continuous functions, Hamming centre and NK landscape.
We have used RBFN as surrogate model which is well suited for
approximation of continuous functions. Hence as expected our
proposed algorithm has shown better results for all three contin-
uous functions. In Table 5, improvement percentage is reported

?In [20] the authors provided an indication of NK-landscape hard-
ness under different settings.



Table 2: Summary of 1200 runs of Continuous Optimisation (20 independent runs for each system for each m size)

_ Mean Best Std _ Mean Best Std _ Mean Best Std _ Mean Best Std
Dixon&Price Function
m=20 m=30 m=40 m=50
PSO-Surrogate 14063.7 15481.6 795.8 | 33328.1 35830.8 2462.3 | 63745.9 66033.8 1709.9 | 100863.8 105515.0 3858.6
PSO 13428.1 14239.8 542.4 | 32487.1 351769 1999.5 | 60723.8 64666.9 2187.2 | 93936.8 103205.0 4462.5
Standard GA (Fixed settings) | 12039.4 12919.7 579.1 | 27963.9 299729 1231.5 | 51728.3 551553 1232.8 | 82155.0 86391.2 1812.6
1+1 ES (Fixed settings) 10484.8 12215.1 775.0 | 22915.5 255989 903.3 | 39411.4 41936.5 14447 | 59656.4 64101.2 2416.6
Random Parameter search 9891.2 10851.6 496.8 | 218154 23319.3 886.7 | 381749 46156.5 2346.8 | 57476.1 60739.9  1596.5
Michalewics Function
m=20 m=30 m=40 m=50
PSO-Surrogate 8.7 10.5 0.9 13.8 16.4 1.8 22.3 25.2 2.4 29.2 33.7 43
PSO 8.5 10.5 0.9 13.0 17.0 1.7 17.8 23.2 2.8 22.9 31.9 4.5
Standard GA (Fixed settings) 6.0 7.1 0.7 10.1 12.3 1.1 14.1 15.7 0.9 18.3 20.0 0.9
1+1 ES (Fixed settings) 4.4 5.1 04 6.2 7.3 0.6 7.1 9.0 0.7 8.6 11.0 0.9
Random Parameter search 4.1 5.5 0.6 54 7.3 0.7 6.5 7.3 0.5 7.9 9.9 0.9
Rastrigin Function
m=20 m=30 m=40 m=50
PSO-Surrogate 518.0 598.1 52.6 838.6 920.4 60.9 11429 1260.0 114.1 1466.8 1576.8 139.3
PSO 478.0 552.3 36.0 748.5 875.4 92.5 931.3 1156.4 144.8 1247.7 1532.5 197.7
Standard GA (Fixed settings) 374.7 490.1 69.3 547.7 639.5 64.4 789.9 854.4 40.4 998.1 1142.0 71.2
1+1 ES (Fixed settings) 248.4 313.2 36.5 286.2 403.8 51.5 269.7 441.0 73.2 287.1 398.5 62.8
Random Parameter search 221.0 317.1 423 215.5 329.1 48.3 217.5 329.8 57.7 181.8 305.3 539

*Bold numbers are the highest.




Table 3: Summary of 900 runs of NK-Landscape (20 independent runs)

Algorithm | Mean  Best Std | Mean Best Std | Mean Best Std |
| N20 K4 | N20 K10 | N20 K15 |
PSO-Surrogate 0.757 0.775 0.017 | 0.739 0.778 0.017 | 0.737 0.771 0.013
PSO 0.743  0.775  0.020 | 0.737 0.770 0.015 | 0.729 0.756 0.019
Standard GA (Fixed settings) | 0.725  0.775  0.025 | 0.714 0.755 0.023 | 0.687 0.750 0.018
1+1 ES (Fixed settings) 0.709 0.752 0.017 | 0.726 0.745 0.014 | 0.719 0.737 0.012
Random Parameters search 0.679  0.732  0.025 | 0.681 0.711 0.017 | 0.689 0.748 0.027
N30 K6 N30 KI5 N30 K20
PSO-Surrogate 0.766  0.798 0.019 | 0.724 0.760 0.016 | 0.710 0.757 0.018
PSO 0.762 0.782  0.012 | 0.719 0.743 0.016 | 0.708 0.734 0.015
Standard GA (Fixed settings) | 0.733  0.772  0.018 | 0.693 0.724 0.017 | 0.687 0.727 0.019
1+1 ES (Fixed settings) 0.697 0.721 0.011 | 0.701 0.728 0.014 | 0.698 0.731 0.011
Random Parameters search | 0.670  0.700  0.014 | 0.673 0.708 0.017 | 0.663 0.697 0.015
N40 K8 K40 K20 N40 K25
PSO-Surrogate 0.769 0.791  0.009 | 0.717 0.746 0.014 | 0.706 0.734 0.013
PSO 0.767 0.782  0.008 | 0.716 0.731 0.010 | 0.702 0.724 0.012
Standard GA (Fixed settings) | 0.721 0.757 0.014 | 0.689 0.713 0.016 | 0.683 0.714 0.015
1+1 ES (Fixed settings) 0.685 0.703 0.010 | 0.684 0.736 0.016 | 0.686 0.704 0.007
Random Parameters search | 0.653 0.720  0.023 | 0.652 0.674 0.011 | 0.648 0.678 0.015

*Bold numbers are the highest.

for all functions. Improvement in percentage is calculated between
PSO-surrogate and second best result. For Michalewics and Ras-
trigin functions, optimisation results are improved by more than
20%. In Table 5, an increasing trend of improvement in the case
of continuous functions is evident as the complexity of functions
increase. This observation is very encouraging and makes our pro-
posed algorithm a good candidate for very complex optimisation
problems. Dixon & Price function is a unimodal function. Hence,
all the algorithms have performed well and we have seen a max-
imum of 7% improvement by using PSO-surrogate method. But
Michalewics and Rastrigin functions are multimodal functions and
hence optimising these function is difficult. In these functions, our
PSO-surrogate method outperformed all other algorithms by a wide
margin.

In case of Hamming centre problem, our proposed algorithm has
shown good improvement of about 7% for cases of m = 75 to
m = 125. Hamming centre problem is a binary problem. Although
the improvement is considerable but it is less than the continuous
functions.

Hence, in order to get the best out of our proposed method, we
have to select the type of surrogate model which is well suited for
function approximation in a particular type of optimisation prob-
lem.

7. CONCLUSION

This paper proposes a framework for automatically tuning population-

based EA. The proposed framework is comprised of two compo-
nents; PSO that searches the parameters space and a RBFN sur-
rogate model to guide it. The main advantage of our model is
that it optimises the EA parameters in a way to ensure that EA
searches the problem within a limited number of evaluations. We
use PSO as a top-level search to explore the parameters space for
population-based EA, and RBFN surrogate is used to guide the
search. The framework tune the population size, number of gen-
eration and search operators rates.

In our experiments we have used GA as an example of population-
based EA to demonstrate our framework capabilities. Experiments
with three different benchmark problems, namely, NK-landscape,

Hamming Centres and three different continuous optimisation prob-
lems demonstrate that our proposed framework managed to assist
the GA to optimise its parameters and achieves better solutions
than, using Standard PSO without surrogate assistance to optimise
the GA parameters, Standard GA applied directly to the problem
with fixed parameters settings, Standard 1+1 Evolutionary Strategy
(ES) applied directly to the problem and simple Random Search.
The results confirms that parameter tuning is useful and a key factor
of the success of the search. In addition, our experiments confirm
that the use of SM has assisted the PSO because it makes sense
of the available information and point out promising areas in the
parameters space. Thus, our framework was able to successfully
optimise the parameters using a very small number of exploration
in the parameters space.

There are many directions where we can extend this research. As
mentioned previously, an interesting future study is to investigate
the relationship between the problem’s difficulty (that suggested
the use of an EA) and the sensitivity of the parameters settings.
We would also like to explore the model behaviour with different
EA representations (e.g., optimising the parameters of GP) as each
EA has different level of parameters sensitivity to its performance.
Another direction of this research is to allow the model to tune the
parameters of the EA during the run as to maintain its diversity and
prevent the premature convergence problem.
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