
Multi-Agent Multi-Issue Negotiations with Incomplete Information:
A Genetic Algorithm Based on Discrete Surrogate Approach

Ahmed Kattan, Yew-Soon Ong and Edgar Galván-López

Abstract— In this paper we present a negotiation agent based
on Genetic Algorithm (GA) and Surrogate Modelling for a
multi-player multi-issue negotiation model under incomplete
information scenarios to solve a resource-allocation problem. We
consider a multi-lateral negotiation protocol by which agents
make offers sequentially in consecutive rounds until the deadline
is reached. Agents’ offers represent suggestions about how to
divide the available resources among all agents participating
in the negotiation. Each agent may “Accept” or “Reject” the
offers made by its opponents through selecting the “Accept”
or “Reject” option. The GA is used to explore the space of
offers and surrogates used to model the behaviours of individual
opponent agents for enhanced genetic evolution of offers that
is agreeable upon all agents. The GA population comprises of
solution individuals that are formulated as matrices where a
specialised three different search operators that take the matrix
representation into considerations are considered. Experimental
studies of the proposed negotiation agent under different scenar-
ios demonstrated that the negotiations by the agents completed
in agreement before the deadline is reached, while at the same
time, maximising profits.

I. INTRODUCTION

Negotiation is a process in which disputing agents decide
how to divide the gains from cooperation between themselves.
Since this decision is made jointly by the agents, each agent
can only obtain what the others are prepared to allow them. In
resource-allocation problems, each resource can be envisaged
as a pie that all agents are trying to decide how to divide
among themselves. Each agent is negotiating a set of resources
on the basis of maximising a utility function. This utility func-
tion is used as a means for expressing high-level objectives.
For example, two agents may have different preferences over
a set of resources and, thus, each agent may be interested in
maximising its share of particular resources. In some nego-
tiation games, agents may have complete information about
each other’s utility functions. Hence, each agent optimises
its own target with respect to its opponents’ objectives in
order to end the negotiation in agreement. However, in most
real-world scenarios, agents do not disclose information about
their utility functions which makes the negotiation problem
more challenging (i.e., because of incomplete information).
In these situations, each agent needs to make careful offers
to other agents as set of resources is to be divided among
themselves in such a way to satisfy all other agents and reaches
an agreement. Negotiation with incomplete information is
a common scenario in many real-world problems since the

Ahmed Kattan is with the AI Real-World Applications Lab, Computer
Science Department, UQU, Saudi Arabia. Yew-Soon Ong is with the School of
Computer Engineering, Nanyang Technological University, Singapore. Edgar
Galván-López is with the Distributed Systems Group, School of Computer
Science and Statistics, Trinity College Dublin. email: ajkattan@uqu.edu.sa,
asysong@ntu.edu.sg, and edgar.galvan@scss.tcd.ie.

negotiation decision is non-centralised and jointly made by all
agents. For example, in an agent-based negotiation system, a
group of software agents will negotiate on behalf of their users
trying to reach a common agreement. Each agent is trying
to reveal the behaviour of its opponents by observing their
interactions and subsequently modelling their behaviours via
machine learning techniques, for example [1], [2].

In most real-world scenarios, agents seldom negotiate on
single resource only, but rather over a set of multiple resources.
Such negotiations have been established as multi-issue nego-
tiations [3]. In this paper, the term ‘issue’ refers to a resource
item in the negotiation. Multiple issues can be negotiated using
different procedures. These include the Package Deal Proce-
dure (PDP), Sequential Procedure (SQP), and Simultaneous
Procedure (SP). However, different procedures are known to
result in unique outcomes, and the choice of a procedure
would depend on the characteristics of its outcome. One of
the desirable characteristics is Pareto-efficiency. Among the
PDP, SQP, and SP, only the PDP is known to result in Pareto-
efficient outcomes [4]. The PDP, will therefore be the focus of
this work. For the PDP, all the issues are bundled and discussed
together as a package [4]. Thus, in PDP, either all agents agree
on how to divide best the resources among themselves or else
the negotiation will not reach an agreement.

Classical game theory negotiation models provide detailed
theoretical analysis on the optimal outcomes of a negotiation
process, under a predefined negotiation protocol (e.g., see
[5] [6]). These analytical studies add valuable knowledge to
the boundaries of the negotiation process. However, these
normative theories fail to advise the courses of actions that
a negotiator may follow to reach this optimal outcome. In
this paper, we propose a negotiation agent to deal with
multiple-agent multiple-issue negotiations under incomplete-
information settings. We use a multi-lateral negotiation proto-
col by which agents make offers sequentially in consecutive
rounds until the deadline is reached. Agents’ offers represent
the suggestions on how to divide the available resources
among themselves. For example, as illustrated in Figure 1,
for n number of agents negotiating on m number of resources,
agents’ offers can be formulated as a matrix M of size n×m,
where each row contain values in the interval [0, 1] to indicate
the share of each agent from a particular resource, while each
column denotes an offer to the opponent agents. Note the
total values of any row in matrix M is 1. Each agent may
then respond to offers given by its opponents in the form of
“Accept” or “Reject”.

Surrogate models, also known as response surface models,
are approximation models, that mimic the behaviour of a given
model as closely as possible while being fast surrogates for

Μ	

Division of the mth recourse among n number of
agents. Σn α0,j = 1.

An offer to the nth agent represents a suggestions of its share
from each resource.

Fig. 1. Offer matrix representation. Each row represents the suggested share
of each agent for a particular resource. While, each column represents an
offer to a particular agent.

time-consuming computation. In a nutshell, surrogate models
work by running simulations on a set of points and fitting
response surfaces to the resulting input-output data. Some
commonly used approximation functions include the Gaussian
Process (also called Kriging), Artificial Neural Networks,
Radial Basis Function Networks (RBFNs) and Support Vector
Machines [7].

Since the main focus of this paper lays on negotiation with
incomplete information settings, we used surrogate models
for the proposed agent to map offers to their responses.
To this end, the proposed agent observes the interaction of
it’s opponents in order to predict an agreement zone among
all agents. For n number of agents, we use n − 1 number
of surrogates (i.e., one for each opponent) and update the
surrogates after each round with new offers and their responses
(i.e., Accept or Reject). The proposed agent generates offers
for opponents using a Genetic Algorithm (GA) engine to
evolve a matrix offer (as represented in Figure 1). The GA
is used to explore the offers space in such a way to reach
an agreement zone and maximise profit of our agent (we will
further explain this in Section IV).

The reason why we used surrogate models is because
they have the ability to model an unknown function from
small number of sample points. This allows us to explore
the offers space of the opponents in such a way to reach
superior solutions and derive negotiation strategies that satisfy
all negotiators. As will be seen in Section II, most of the
existing works for agent-based negotiation systems, under
incomplete information settings, used the notion of distance
where the main idea is to generate offers that minimise the
Euclidean distance to the most recent counter offers given
by the opponents. While this seems to be a good way to
make offers that satisfy the opponents, however, it focuses
the search on a very small area in the offers space (i.e.,
because it searches for solutions around the most recent
counter offer). However, in our work, we use surrogate to
model the opponents behaviour and then freely explore their
offers space, thus, achieving better solutions.

The structure of this paper is as follows. Section II presents

some related work. Section III presents the negotiation proto-
col used in this work. Section IV provides a detailed descrip-
tion of the proposed negotiation agent. Section V covers an
empirical analysis of the proposed agent. Finally, this papers
ends in Section VI where some conclusive remarks and future
work directions are presented.

II. RELATED WORK

A. Multi-Agent Negotiation

In the past few decades, there has been noticeable devel-
opment of multi-agent systems and automated negotiation to
solve coordination and cooperation for resource allocation
problems in complex environments. Lau [2] proposed an
adaptive negotiation agent based on GA for multi-agent multi-
issue negotiations. The author assumed that agents can change
their utility functions during the negotiation process itself. To
this end, GA is used to evolve offers that maximise profits,
while at the same time, minimises the weighted Euclidean
distance between the evolved offer and the most recent counter
offers thrown by the opponents.

Rubenstein-Montano et. al. [8] treated multi-agent negoti-
ation as a constrained multi-objective optimisation problem
in which they used a GA to evolve offers in the agreement
zone. The GA used a weighted sum approach to handle the
multiple objectives of each negotiation participant. The authors
proposed a customised search operator called trade. This trade
operator simulates a concession making mechanism that is
often used in negotiation systems. Matwin et. al. [9] used a
GA to evolve negotiation rules instead of offers for two-agent
multi-issue negotiations. These rules represent the offers and
counter offers.

Kattan and Fatima [10] proposed a hyper-GA to evolve
optimal agendas for bilateral multi-issue sequential negotia-
tion, where the order of issues being negotiated influences the
negotiation outcome. The hyper-GA comprised an outer-GA
that searches for the optimal set of issues to be included in the
agenda and an inner-GA that searches for the optimal order of
the selected issues in a manner that increases agents’ profits.
In addition, Particle Swarm Optimisation is used to balance
the computational budget between the two GAs.

To date, the use of surrogate models in agents-based
negotiation systems has not been well explored thus far.
In [3], the authors presented a hyper-GA system to evolve
optimal agendas for package deal two-agent negotiation under
complete-information settings. The proposed hyper-GA uses
a surrogate model based on Radial Basis Function Networks
(RBFNs) to speed up the evolution. The hyper-GA comprises
1) an outer-GA that searches the space of possible agendas and
2) an inner-GA that optimises the shares of each agent from the
selected issues (encoded in the evolved agenda) in such a way
as to maximise the utility functions of both agents. An RBFN
surrogate is used to predict the profits of evolved agendas and
reduce the computational costs of the inner-GA. Later, Kattan
and Fatima [11] presented a multi-surrogate based GA that
deals with a dynamic utility function for two-agent negotiation.
The proposed system assumed that the agent’s opponent may
switch between several pre-defined utility functions during the

negotiation process. To this end, several surrogate models are
trained for each possible utility function. The authors proposed
a choice mechanism to select the most appropriate surrogate
model each time the system tries to evolve an offer to reach
an agreement zone.

Unlike other works, the proposed agent (for multi-agent
multi-issue negotiations under incomplete-information set-
tings) is designed to deal with real-world scenarios in real-time
for the Package Deal Procedure. The proposed agent learns the
preferences of its opponents through their interactions. One of
the major challenges in this work is that we use a surrogate to
model discrete responses (i.e., accept or reject) coming from
the agent’s opponents to previously thrown offers. While, it
is known that surrogate models are used to model continuous
spaces [12]. To the best of our knowledge, this is the first work
where surrogate is used to map discrete spaces in agent-based
negotiation systems.

The main assumption, in this paper, is that all participating
agents do not disclose any information about their utility
functions. Moreover, we assume that agents’ utility functions
are fixed until the end of the negotiation process.

B. Surrogate Modelling

Surrogate models (SMs) used in evolutionary frameworks,
typically known as response surface models or meta-models,
are approximation models that mimic the behaviour of the
simulation model as closely as possible while being fast sur-
rogates for time-consuming objective functions. In a nutshell,
SMs work by running simulations at a set of points and fitting
response surfaces to the resulting input-output data. To date,
many data centric approximation methodologies have used to
construct surrogates. These include the polynomial regression,
support vector machines, artificial neural networks, radial basis
functions, Gaussian process [13] and surrogate ensembles
[14] are among the most commonly investigated [7]. Early
approaches have focused on building global surrogates [15]
that attempts to model the complete problem fitness landscape.
However, due to the effects of the curse of dimensionality [16],
many have turned to local surrogate models [17] [18] or their
synergies [19] [20] or ensembles.

III. NEGOTIATION PROTOCOL

The negotiation protocol used in this work aims to study
solutions for n > 2 agents to allocate m > 1 resources
amongst themselves through negotiation. Thus, let the set
G = {g0, g1, ..., gn} denote the set of agents participating
in the negotiation process. Each agent is trying to maximise
its utility function Ugi . We assume that this utility function
is hidden and different agents may act on different utility
functions. The negotiation process moves round by round
under a fixed deadline. All agents have to reach an allocation
agreement, otherwise no resource will be allocated for any
agent. In each r round, agents make offers sequentially. The
order in which agents make offers in each round is decided
randomly. For each offer, all opponents evaluate the given offer
with respect to their utility functions and respond accordingly.
Agents’ offers represent an allocation of the resources to all
agents (see Figure 1). Each agent can respond to a given offer

as Accept or Reject. For any given offer, if all opponents are
satisfied (i.e., all of them responded with Accept) then the
negotiation ends in an agreement, otherwise, the negotiation
will proceed to the next agent to send a new offer, and so on.
The worst possible outcome of a negotiation is that agents
don’t reach an agreement until the deadline, and then the
negotiation is declared to be failed.

An agent accepts an offer if and only if its profit is more
than its reservation value, otherwise, it will be rejected. The
reservation value of each agent is a predefined percentage of
the maximum possible profit from its utility function. More
formally, if Ugi is the utility of agent gi, where Ugi is a
function that receive the allocated shares of each resource as
parameters. Thus, Ugi(α0, α1, ..., αm) determines agent gi’s
profit, where αi ∈ [0, 1] represents a proposed offer to allocate
of the ith item and ogi

rt
= {(αi)|i = 1, ...,m} denote an offer

given to gi in round r at time t. The reservation value is
calculated as follows:

ReservationV alue = Max(Ugi)×minimum accepted profit.

where minimum accepted profit is a number from the
interval [0, 1]. Thus, agents responses to given offers can be
formulated as:

Response(gi) =

{
ifUgi > ReservationV alue ,Accept

else ,Reject

IV. NEGOTIATION AGENT

In a nutshell, our proposed agent builds a library of ob-
servations about its opponents’ interactions and then uses
this information as the training set for surrogate modelling
(i.e., one per opponent). To this end, the proposed agent
uses a form of a continuous learning process throughout the
negotiation, where it accumulates observations and increases
its knowledge about preferences of its opponents. Hence, it
collects information about the offers sent to each agent along
with their responses. Each observation can be represented as
a triplet of < gi, offer, response>, where an offer can be
denoted ogi

rt
= {α0, α1, ..., αm}. For the responses, we encode

each accepted offer as 1 and each rejected offer as 0. Thus, for
each agent, a vector vgi of observations can be formulated. The
proposed agent uses each collected vector as the training set to
build a surrogate model for each opponent. This process can
be formulated as follows: Let set V = {vg0 , vg1 , ..., vgn−1} be
the set of observations collected for each agent at particular
round, while let set S = {sg0 , sg1 , ..., sgn−1} be the set
of surrogates used to model the agents’ behaviours. Hence,
∀sgi ∈ S, vgi is used as the training set to model the function
sgi : O→ R{0, 1}. Note that the set V is updated with the
new observations after each round while set S comprises of
built surrogates of the newly updated observations accordingly.

As will be shown in the experiments section, we investigated
our agent’s performance on two form of machine learning
approximation methodologies, namely, RBFN and Kriging [7].
With the set of surrogate models available, a GA engine
is then used to evolve offers in the agreement zone. If the
proposed agent managed to evolve an acceptable offer for all
agents, then we declare that it managed to successfully end

the negotiation in agreement. Otherwise, it will wait for its
turn in the next round to make a new offer. Meanwhile, new
observations will be accumulated and surrogate models will
possess increasing knowledge about the offers space of each
opponent. The following sub-section will present, in details,
the process of evolving offers.

A. Evolve Offers

Our proposed agent uses a GA engine to explore the space
of offers. For the purpose of offers representation, each offer
to our agent’s opponents is represented as a matrix of size
m×n (as illustrated in Figure 1) where each row represents the
division of mth resources among n number of agents and each
column represents the nth agent’s share from each resource.
Thus, the GA population comprises of solution individuals that
are formulated as matrices. For the GA, we consider three
different operators that take the matrix representation into
considerations (more details in subsection IV-B). All search
operators are designed to maintain correct syntax (i.e., the
summation of the values in any row should be 1). The fitness
function of the GA is made up of two functions to evaluate the
quality of each offer-matrix in the population and a penalty
scheme to assure convergence of the evolution toward accepted
offers. The first function is formulated as follows:

F1 =
n−1∑
i=1

sgi(Offerxq) (1)

where sgi (Offerxq) is the prediction outcome of the surrogate
that was trained by observations collected for agent gi. Note
that we round the surrogate’s output to 0 or 1. Thus, the GA
is searching for offers that maximise their possibility of being
accepted. The second function is simply the utility function of
our agent. Hence,

F2 = Ug0(α0, α1, ..., αm) (2)

where Ug0 represents the utility function of our proposed
agent. Finally, the penalty term is the outcome of a K-Nearest
Neighbour (KNN) algorithm. The KNN is measuring the
Euclidean distance between an evolved offer and previous
offers to each agent. The aim is to maximise the distance
to previously rejected offers and minimise the distance to
previously accepted offers. The use of KNN in the fitness
measure assures that the search converges toward an agreement
zone. The penalty term is calculated as follows:

Penalty =∑n−1
i=1

Pk
j=1Distance(Offerxq ,gi(Accepted offerj))Pk

z=1Distance(Offerxq ,gi(Rejected offerz))+1

(3)

where Distance(Offerxq , gi(Accepted offerj)) is the Eu-
clidean distance between an evolved offer (Offerxq) and
the jth previously accepted offer for the gi agent. The
gi(Rejected offerz) is used to denote the zth rejected offer
by the same agent. Note that good solutions are on the bor-
derline between accepted and rejected offers and there where

the search should focus. To purely maximise the distance to
rejected offers makes it difficult to stay on this borderline.
Hence, Equation 3 is treated as a penalty term (which is mainly
should be minimised) while Equations 1 and 2 are meant to
be maximised.

As will be seen in the experimental sections, in order to
validate the significance of the KNN in the fitness measure-
ment, we study the performance of the agent with the use of
KNN and without.

The final fitness function is the summation of Equations 1
and 2, in addition Equation 3 used as a penalty term. The
outputs of Equations 1 and 2 have been scaled to values in
the interval [0, 1]. Thus, the fitness value of any individual in
the GA population is:

Fitness =
F1
n− 1

+
F2

Max(Ug0)
− Penalty (4)

The objective is thus to maximise the fitness function or the
quality of the evolved offers. GA undergoes a search process,
guided by the fitness function in Equation 4, to explore the
space of offers and return the most promising offer that is
most likely to be accepted by our agent’s opponents and
maximise profit as much as possible. It should be noted that
the surrogate is used to model the unknown behaviours of our
agent’s opponents and not to save computational costs.

B. Search Operators

As mentioned previously, the search operators are designed
to maintain proper syntax of the individual’s matrix represen-
tation. Here, we consider three operators to explore the offers
space. First, we used a crossover operator in which the two
matrices exchange a row, randomly. Second, an aggressive
mutation operator that replaces an entire randomly selected
row with a randomly generated row. Note that any randomly
generated row shall adhere to the defined syntax imposed in
which the summation of its values equal to 1. Finally, we used
a smooth mutation operator where an element of a random
selected row is mutated into a new value. In this mutation, the
difference between mutated values and the old value is traded
with the remaining elements in the same row in such a way
as to maintain the total summation of the elements within the
same row to 1.

C. Surrogate Learning

In principle, the proposed agent can apply any surrogate
model to approximate the offers space of its opponents. To
verify this, we investigated the performance of the proposed
agent using two different surrogate models (i.e., RBFN and
Kriging). It is worth noting that in principle, all surrogate
models are implicitly or explicitly spatial models as their pre-
dictions involve exploiting some assumed spatial smoothness
or continuity between the values of the function at a query
point whose value is unknown and has to be predicted, and
the known solutions in the search space. This makes surrogates
naturally suited to continuous function optimisation. However,
remember that our interest is on surrogates that models given

input offers to discrete responses as output due to the discrete
nature of the agents responses.

The point ogi
rt

represents an offer given to the agent gi
in round r at time t. Thus, we store all offers ogi

rt
in each

round along with their responses (i.e., Accept= 1, Reject= 0)
and then use this information as training points for the sgi

surrogate. The number of training point increases in each
round to allow the surrogate collect more information about
the undersampled offers space of the gi agent. Remember the
proposed agent builds an independent surrogate model for each
opponent.

The next two sub-sections will describe the mathematical
notation of both RBFN and Kriging model.

1) RBFN: A radial basis function (RBF) is a real-valued
function φ : Rn → R whose value depends only on
the distance from some point ogi

rt
, called a center, so that

φ(Offerxq) = φ(‖Offerxq − ogi
rt
‖). The point ogi

rt
is a

parameter of the function and Offerxq is a new offer in the
offers space of the agent gi (i.e., query point).

The norm is usually Euclidean, so ‖Offerxq − ogi
rt
‖ is the

Euclidean distance between the offer ogi
rt

and the Offerxq .
Other norms are also possible and have been used. Com-
monly used types of radial basis functions include Gaussian
functions, multi-quadric, poly-harmonic splines, and thin plate
splines. The most frequently used, and the one we used on this
paper, are Gaussian functions of the form:

φ(x) = exp(−β‖Offerxq − ogi
rt
‖2)

where β > 0 is the width parameter.
Radial basis functions networks are typically used to build

function approximations of the form:

y(Offerxq) = w0 +
N∑
t=0

wi φ(‖Offerxq − ogi
rt
‖).

Therefore the approximating function y(Offerxq) is repre-
sented as a sum of N radial basis functions, each associated
with a different center ogi

rt
, a width β, and weighted by

an appropriate coefficient wi, plus a bias term w0. Any
continuous function can in principle be approximated with
arbitrary accuracy by a sum of this form, if a sufficiently large
number N of radial basis functions is used.

2) Kriging: Kriging or Gaussian Process can be seen as
a general case of the RBFN where the approximation of an
unseen point take the following form:

y(Offerxq) = exp(−
N∑
t=0

βt|Offerxq − ogi
rt
|pt+1)

Similar to RBFN, Kriging is based on the idea that the
value at a query point (Offerxq in our case) should be the
average of the known values at its neighbours weighted by
the neighbours’ distance to the query point. Unlike the RBFN,
however, Kriging uses a vector β = {β0, ..., βt}T allow the
width to vary from variable to variable [21].

V. EXPERIMENTS

Experiments were designed to investigate the proposed
agent under different scenarios so as to bring insights on the
potential benefits and limitations.

TABLE I
PARAMETRIC SETTINGS OF THE ALGORITHMS CONSIDERED SETTINGS IN

THE EXPERIMENTS.

Parameter Proposed Agent’s GA
Aggressive Mutation 15%

Smooth Mutation 15%
Crossover 70%

Tournament size 5
Population Size 100

Generations 100

Parameter Selfish GA
One-Point Mutation 30%

Crossover 70%
Tournament size 5
Population Size 100

Generations 100

A. Experimental Settings

The present experimental work has been divided into two
different studies. In the first study, we considered four different
versions of our agent against a standard selfish GA. The selfish
GA basically tries to optimise the shares from each resource in
such a manner as to maximise the profit of the agent it serves
and divide the remaining share of each resource among the
remaining agents equally. The fitness function of the selfish
GA is the utility function of its agent. Usually, this selfish
GA fails to reach an agreement. However, the aim of the first
experimental study is to validate the efficacy of the different
agent types. Remember that our agent builds a surrogate model
for each opponent and involves a GA that evolves offers in
the agreement zone (see Section IV). The four configurations
of our agent considered here are listed as follows:
• Version 1: We used Kriging as the surrogate model with

KNN as part of the GA fitness measurement to ensure
convergence of the search (see Equation 3).

• Version 2: We used Kriging as the surrogate model
without KNN in the GA fitness measurement.

• Version 3: We used RBFN as the surrogate models with
KNN as part of the GA fitness measurement.

• Version 4: We used RBFN as the surrogate models
without KNN as part of the GA fitness measurement.

Since surrogate are mainly suited for continuous spaces,
it would be interesting to observe the behaviour of the two
state-of-the-art approximation methodologies for the present
application (i.e., discrete space). The KNN heuristic was
switched on and off to validate the effects on GA search. The
parametric settings of the selfish GA and the GA used by
our agent for evolving agent offers are tabulated in Table I.
The settings were optimised using a trial-and-error procedure
during preliminary experiments in a way that maximise the
performance of all systems in the comparison.

We investigate each configuration of our agent (versions
1-4) against four agents to form a negotiation game that

makes up of 5 competing agents. Each agent is supplied
with a unique utility function and preference of resources
in the negotiation as defined in the Appendix of Section
VI. Each competitor agent uses the selfish GA to generate
its offers. The experimental study include negotiations over
10, 20, 30, 40, 50, 100, and 120 different resources. For each of
resource size, 20 independent simulation runs were conducted.
The deadline for all negotiations was set to 10 rounds.

In the second experimental study, we allow each of the four
different agent versions (versions 1-4) to compete against each
other in the same game. In addition, we added a benevolent
agent that uses a standard GA to optimise its shares from
each resource in such a way to get the reservation value
only and divide the remaining share of each resource equally
among the remaining agents. Thus, we formed a negotiation
game of 5 agents where each agent uses different negotiation
techniques. Similar to the first experimental study, we allowed
the 5 agents to negotiate over 10, 20, 30, 40, 50, 100, and 120
different resources. Once again, for each resource size, we
tested the agents through 20 independent runs at a deadline of
10 rounds for negotiations.

B. Results

Table II shows the results of our first experimental study.
As mentioned previously, we investigate each of the four
versions of our agent against 4 other selfish GA agents. We
used utility function Ug0 (see Appendix VI) to represent
our agent while the utility functions Ug1 , Ug2 , Ug3 , and
Ug4 represent our agent’s opponents. The reservation value
was set to be 0.5 ×Max(Ugi). For each of 20 independent
runs, we collected the number of times that our agent won
the negotiation over the opponents (i.e., managed to end the
negotiation in agreement before the deadline). In addition,
we present the average number of rounds (across the 20
runs) taken by our agent to end the negotiation in agreement.
Moreover, we show our agents’ profit (i.e., outcome of Ug0).
Finally, also reported the quality of each version as:

Quality =
Wins

Avg.Rounds
× profit

To this end, a high Quality value reflects an agent that
achieves high number of wins (across the different negotiation
games) fast, i.e., before the deadline is reached, while achiev-
ing high profit. As can be seen from Table II, RBFN with KNN
achieved the highest quality when the agents were negotiating
over 10 and 20 resources. When the negotiation problem got
tougher (i.e., agents were negotiating over more resources) the
RBFN (without KNN assistance) exhibited the highest quality.
In fact, the RBFN is found to win all games when agents
were negotiating over 50 resources. The large disparity in the
quality of RBFN and Kriging thus seems to imply that both
models the discrete landscapes rather differently. Interestingly,
Kriging did not manage to achieve an agreement in any game
(out of the 20 runs) in two cases, i.e., when 10 and 30 resource
sizes are considered. The results in the table also indicated that
RBFN has always been able to achieve the highest profit. It,
however, could not achieve an agreement in the early rounds
relative to the other versions. This thus indicates that RBFN

may be more suitable for negotiation games with a longer
deadline where the user is willing to take a higher risk as a
trade-off for profits. Both Kriging with KNN and RBFN with
KNN also exhibited the smallest average rounds necessary to
reach an arrangement in most cases. This indicates that they
could be more suitable for users who are unwilling to take
risk for sake of possibly higher profits.

The results in Table II are further supported in Table
III, where the performance for the 4 different versions of
our proposed agent are summarised. Clearly, RBFN always
achieve the highest profit. However, it does so at the expenses
of higher number of rounds incurred before reaching an
agreement. Kriging on the other hand incurred the smallest
number of rounds but has a small number of wins (it won only
38.6% of the negotiation games in the experiments). Agent
with Kriging and KNN has second smallest number of rounds
at high number of wins, winning 66.4% of the negotiation
games in the experiments.

TABLE II
RESULTS OF EACH PROPOSED AGENT (VERSIONS 1-4).

EACH RESOURCE SIZE WAS SIMULATED FOR 20 INDEPENDENT RUNS.

Kriging KNN Kriging RBFN KNN RBFN
Resources = 10

Wins 12.000 0 15.000 8.000
Avg. Round 4.833 N/A 4.800 5.000

Profit 0.948 N/A 0.908 0.997
Quality 2.354 N/A 2.837 1.595

Resources = 20
Wins 11.000 1.000 19.000 17.000

Avg. Round 4.727 8.000 4.053 4.824
Profit 0.854 1.000 0.836 0.982

Quality 1.987 0.125 3.921 3.460
Resources = 30

Wins 7.000 0 12.000 10.000
Avg. Round 3.857 N/A 5.833 4.700

Profit 0.817 N/A 0.902 0.998
Quality 1.483 N/A 1.856 2.124

Resources = 40
Wins 10.000 7.000 11.000 14.000

Avg. Round 3.600 4.429 5.091 4.357
Profit 0.821 0.998 0.753 1.000

Quality 2.282 1.578 1.627 3.212
Resources = 50

Wins 17.000 14.000 16.000 20.000
Avg. Round 4.588 3.786 3.500 3.850

Profit 0.770 0.995 0.760 0.999
Quality 2.852 3.681 3.473 5.188

Resources = 100
Wins 16.000 14.000 13.000 16.000

Avg. Round 4.063 4.071 5.231 3.750
Profit 0.797 0.982 0.886 0.984

Quality 3.141 3.378 2.202 4.200
Resources = 120

Wins 20.000 18.000 20.000 17.000
Avg. Round 3.600 4.278 4.050 3.235

Profit 0.781 0.946 0.756 0.930
Quality 4.337 3.979 3.732 4.888

* Bold numbers are the best qualities.
* N/A means the agent didn’t end any negotiation in agreement.

Table IV illustrates the results of the second experimental
study, where the agents versions 1-4 compete. In addition,
a benevolent agent is included in the game. We used utility
function Ug0 to represent the Kriging with KNN agent, utility
function Ug1 to represent the Kriging without KNN agent,

utility functions Ug2 to represent the RBFN with KNN agent,
utility functions Ug3 to represent RBFN without KNN agent,
and finally the utility function Ug4 to represent the benevolent
agent. The results in Table IV indicate that both Kriging with
KNN and RBFN with KNN attained the highest number of
wins. Notably, Kiring with KNN dominated all negotiations
when the number of resources available increased, i.e., in the
large resource sizes. Also, we noted that the benevolent agent
did not win any game in all experiments. This can be explained
by the unique preferences for the resource items. As such, a
fair distribution of the extra shares can never satisfy all agents.
We noticed that in the case of 10 resources size the agents
failed reach an agreement in 4 out of 20 games. With a size
of 100 resources the agents failed to reach an agreement in
only 1 out of 20 games. With a size of 120 resources the
agents failed to reach an agreement in 6 out of 20 games.

TABLE III
SUMMARISED PERFORMANCES OF THE PROPOSED AGENT (VERSIONS

1-4). EACH RESOURCE SIZE WAS SIMULATED FOR 20 INDEPENDENT RUNS.

Summary Kriging Kriging RBFN RBFN
KNN KNN

Avg. Wins 66.4% 38.6% 75.7% 72.9%
Avg. Rounds 4.181 3.509 4.651 4.245
Avg. Profit 0.827 0.703 0.829 0.984

Quality 2.634 1.820 2.807 3.524
* Bold numbers are the highest.

TABLE IV
RESULTS OF 5 AGENTS COMPETITION IN THE SAME GAME.
EACH RESOURCE SIZE WAS TESTED 20 DIFFERENT TIMES.

Kriging
KNN

Kriging RBFN
KNN

RBFN Benevolent
Agent

Resources = 10
Wins 4.000 0 8.000 4.000 0

Avg. Round 4.000 N/A 3.875 1.250 N/A
Resources = 20

Wins 10.000 0 9.000 1.000 0
Avg. Round 4.600 N/A 3.778 2.000 N/A

Resources = 30
Wins 8.000 0 11.000 1.000 0

Avg. Round 3.625 N/A 2.000 2.000 N/A
Resources = 40

Wins 11.000 1.000 7.000 1.000 0
Avg. Round 3.182 3.000 2.286 3.000 N/A

Resources = 50
Wins 11.000 2.000 7.000 0 0

Avg. Round 5.818 3.000 5.000 N/A N/A
Resources = 100

Wins 11.000 1.000 7.000 0 0
Avg. Round 2.000 9.000 5.571 N/A N/A

Resources = 120
Wins 12.000 1.000 1.000 0 0

Avg. Round 2.917 8.000 3.000 N/A N/A
* Bold numbers are the highest wins.
* N/A means the agent didn’t end any negotiation in agreement.

C. Discussion

There is a natural trade off between profit and number of
rounds until agreement. From tables II and III, the inclusion of
KNN led to accelerate the convergence of the agent’s search
for the agreement zone. However, this acceleration came at

the expense of a lower profit. This thus suggests that one can
present a risky agent through the exclusion of the KNN or a
safe agent with the inclusion of KNN based on user preference,
accordingly. This conclusion shed light on the efficiency of
the proposed agent, where Table III shows that the Kriging
requires on average 3.5 rounds before it reaches an agreement,
while the Kriging with KNN requires a higher average of
4.1 rounds before it ends the negotiation in agreement. With
a maximum number of rounds was configured to 10 the
proposed agent is able to reach an agreement within 50% of
the negotiation’s maximum time budget available.

It has been observed from the experimental results, the
complexity of the utility functions used for our agent’s op-
ponents are non-trivial. As a result of the strategy adopted
by our proposed agent in building a surrogate that models
the behaviour of for each opponent it becomes possible to
predict the offers by of each opponent separately and, thus, end
negotiation in agreement more oftenly. This indicate that the
proposed agent can work well with several agents regardless of
the complexity of their utility functions. We can safely assume
that in real-world negotiation the agents may use functions of
the same level of complexity if not more complex.

It is fair to report one major limitation of the proposed agent
is that it requires some initial observations are necessary in
order to collect sufficient training data for training surrogate
models that generate reasonably good offers prediction. Thus,
it cannot be the first to provide an offer in the negotiation
process. If the first turn in the first round were allocated to
either of the proposed agents then a random offer has to be
made.

VI. CONCLUSIONS

This paper presents a negotiation agent for a multi-agent
multi-issue negotiation model under incomplete-information
scenarios to solve a resource-allocation problem. Unlike other
works, the proposed agent is designed to work with Package
Deal Procedures where all agents have to agree on sharing all
issues in the negotiation (before a deadline) or the negotiation
ends in disagreement. We use a multilateral negotiation proto-
col, by which agents make offers sequentially in consecutive
rounds until a deadline. Agents’ offers represent suggestions
about how to divide the available resources among all agents
participating in the negotiation. We used a continuous learning
strategy where the proposed agent learns the preferences of
its opponents through their interactions. To this end, the
proposed agent is building a library of observations about its
opponents’ interactions and uses this information as training
set for surrogate models (i.e., one for each opponent).

One of the major challenges in this work is that we use
surrogate to model discrete responses (i.e., accept or reject)
coming from the agent’s opponents to previous offers. In our
experimental settings, we proposed four different versions of
our agent where we tested each version individually (against
a selfish GA system) and allowed all versions to compete
against each other. In addition, we compared our agent against
a benevolent agent. Results show that the proposed nego-
tiation agent can ends the negotiation in agreement before
the deadline while maximising profits. Moreover, our results

indicates that Kriging and RBFN surrogate treat the same
discrete landscape differently.

One major weakness of our agent is that it can not take the
first turn in the first round to make an offer for its opponents.
This is because the proposed methodology requires the agent
to collect some information about its opponents in order to
make sensible offers.

In future work, we will develop our agent to be able
to deal with dynamic environment in which opponents can
change their utility functions during the negotiation process.
In addition, we will explore the performance of our agent when
the number of opponents is large.

ACKNOWLEDGMENTS

The third author wishes to acknowledge Science Foundation
Ireland (SFI) under the Principal Investigator research program
10/IN.1/I2980 “Self-organizing Architectures for Autonomic
Management of Smart Cities” and by SFI grant 10/CE/I1855
to Lero - the Irish Software Engineering Research Centre
(www.lero.ie) for their support to conduct this research.

APPENDIX

We use the value αj to refer to the agent’s share from the
jth resource. Each αj is multiplied with a value pgi

j ∈ [0, 1] to
indicate the agent’s preference of the jth resource. Hence, the
set P gi = {pgi

0 , p
gi

1 , ..., p
gi

j } represents the agent gi preferences
of the resource items in the negotiation. The value of each pgi

j

is randomly selected in each run.
• Utility of Agent 0 (Dixson & Price function):
Ug0(α0 : αm) = [α0−1]2 +

∑m
j=1 j× [αj×2]2−αj−1.

[22].

• Utility of Agent 1 (Rastrigin function):
Ug1(α0 : αm) = 36 ×

∑m
j=1 αj × cos([10.24 × 0.5j −

5.12]2)− ([10.24× 0.5j − 5.12]2)× 2π)× 10.
[22].

• Utility of Agent 2 (Michalewics function):
Ug2(α0 : αm) =

∑m
j=1 sin(α2

j)× sin(j×αj
2

π)2k

where k = 10. [22].

• Utility of Agent 3 (Rosenbrock function):
Ug3(α0 : αm) =

∑m
j=1[100(α2

j − αj+1)2 + (αj − 1)2]
[22].

• Utility of Agent 4 (Griewank function):
Ug4(α0 : αm) =

∑m
j=1

α2
j

4000 −
∏m
j=1 cos(

αj√
i
) + 1 [22].

REFERENCES

[1] E. Galvan, C. Harris, I. Dusparic, S. Clarke, and V. Cahill, “Reducing
electricity costs in a dynamic pricing environment,” in Smart Grid
Communications (SmartGridComm), 2012 IEEE Third International
Conference on, 2012, pp. 169–174.

[2] R. Y. K. Lau, “Towards genetically optimised multi-agent multi-issue
negotiations,” in Proceedings of the Proceedings of the 38th Annual
Hawaii International Conference on System Sciences (HICSS’05)
- Track 1 - Volume 01, ser. HICSS ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 35.3–. [Online]. Available:
http://dx.doi.org/10.1109/HICSS.2005.637

[3] S. Fatima and A. Kattan, “Evolving optimal agendas for package
deal negotiation,” in Proceedings of the 13th annual conference
on Genetic and evolutionary computation, ser. GECCO ’11. New
York, NY, USA: ACM, 2011, pp. 505–512. [Online]. Available:
http://doi.acm.org/10.1145/2001576.2001646

[4] S. S. Fatima, M. Wooldridge, and N. R. Jennings, “Multi-issue
negotiation with deadlines,” J. Artif. Int. Res., vol. 27, no. 1, pp.
381–417, Nov. 2006. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1622572.1622583

[5] F. Abedin, K.-M. Chao, and N. Godwin, “An agenda based
multi issue negotiation approach,” Journal of Ambient Intelligence
and Humanized Computing, pp. 1–19, 2012. [Online]. Available:
http://dx.doi.org/10.1007/s12652-012-0123-1

[6] M. Wu, M. Weerdt, H. Poutre, C. Yadati, Y. Zhang, and C. Witteveen,
“Multi-player multi-issue negotiation with complete information,”
in Innovations in Agent-Based Complex Automated Negotiations,
ser. Studies in Computational Intelligence, T. Ito, M. Zhang,
V. Robu, S. Fatima, T. Matsuo, and H. Yamaki, Eds. Springer
Berlin Heidelberg, 2011, vol. 319, pp. 147–159. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-15612-0 8

[7] Y. Jin, “A comprehensive survey of fitness approximation in evolutionary
computation.” Soft Comput., vol. 9, no. 1, pp. 3–12, 2005. [Online].
Available: http://dblp.uni-trier.de/db/journals/soco/soco9.html#Jin05

[8] B. Rubenstein-Montano and R. Malaga, “A weighted sum genetic
algorithm to support multiple-party multiple-objective negotiations,”
Evolutionary Computation, IEEE Transactions on, vol. 6, no. 4, pp.
366 – 377, aug 2002.

[9] S. Matwin, T. Szapiro, and K. Haigh, “Genetic algorithms approach
to a negotiation support system,” Systems, Man and Cybernetics, IEEE
Transactions on, vol. 21, no. 1, pp. 102 –114, jan/feb 1991.

[10] A. Kattan and S. Fatima, “Pso as a meta-search for hyper-ga system
to evolve optimal agendas for sequential multi-issue negotiation,” in
Evolutionary Computation (CEC), 2012 IEEE Congress on, june 2012,
pp. 1 –8.

[11] A. Kattan and F. Shaheen, “Evolving optimal agendas and strategies
for negotiation in dynamic environments: a surrogate based approach.”
in GECCO (Companion), T. Soule and J. H. Moore, Eds. ACM,
2012, pp. 1435–1436. [Online]. Available: http://dblp.uni-trier.de/db/
conf/gecco/gecco2012c.html#KattanF12

[12] A. Moraglio and A. Kattan, “Geometric generalisation of surrogate
model based optimisation to combinatorial spaces,” in Proceedings
of the 11th European conference on Evolutionary computation in
combinatorial optimization, ser. EvoCOP’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 142–154. [Online]. Available: http://dl.acm.
org/citation.cfm?id=2008339.2008352

[13] F. H. Lesh, “Muti-dimensional least-squares polynomial curve fitting,”
Communications of ACM, vol. 2, no. 9, pp. 29–30, 1959.

[14] T. Goel, R. T. Haftka, W. Shyy, and N. V. Queipo, “Ensemble of
surrogates,” Structural and Multidisciplinary Optimization, vol. 33,
no. 3, pp. 199–216, 2007.

[15] H. Ulmer, F. Streichert, and A. Zell, “Evolution strategies assisted by
Gaussian processes with improved preselection criterion,” The 2003
Congress on Evolutionary Computation, 2003. CEC ’03, vol. 1, pp.
692–699, 2004.

[16] D. L. Donoho, “High-dimensional data analysis: the curses and blessings
of dimensionality,” American Mathematical Society Conference on Math
Challenges of the 21st Century, August 2000.

[17] K. C. Giannakoglou, “Design of optimal aerodynamic shapes us-
ing stochastic optimization methods and computational intelligence,”
Progress in Aerospace Sciences, vol. 38, no. 1, pp. 43–76, 2002.

[18] Y. S. Ong, P. B. Nair, and A. J. Keane, “Evolutionary Optimization
of Computationally Expensive Problems via Surrogate Modelling,”
American Institute of Aeronautics and Astronautics Journal, vol. 41,
no. 4, pp. 687–696, 2003.

[19] Z. Z. Zhou, Y. S. Ong, M. H. Lim, and B. S. Lee, “Memetic algorithm
using multi-surrogates for computationally expensive optimization prob-
lems,” Soft Computing Journal, vol. 11, no. 11, pp. 957–971, 2007.

[20] Z. Zhou, Y. S. Ong, P. B. Nair, A. J. Keane, and K. Y. Lum, “Combining
global and local surrogate models to accelerate evolutionary optimiza-
tion,” IEEE Transactions on Systems, Man and Cybernetics (SMC), part
C, vol. 37, no. 1, pp. 66–76, 2005.

[21] A. Forrester, A. Sobester, and A. Keane, Engineering design via surro-
gate modelling: a practical guide. Wiley, 2008.

[22] M. Molga and C. Smutnick, “Test functions for optimization needs,”
Test functions for optimization needs, 2005.

