
i

UNIVERSAL LOSSLESS
COMPRESSION TECHNIQUE
WITH BUILT IN ENCRYPTION

By

Name:Kattan, Ahmed
Registration Number: 0540714

Login: akatta

A thesis submitted in partial fulfilment of the requirements
for the degree of

Masters in Computer Science

2006

Tutor Coordinator
Prof.Riccardo Poli Dr.Ramaswamy Palaniappan

14 September 2006

i

SURNAME: Kattan

OTHER NAMES: Ahmed

QUALIFICATION SOUGHT: Msc Computer Science

TITLE OF PROJECT: Universal lossless compression technique with built in encryption

SUPERVISOR: Professor Riccardo Poli

DATE (month and year): 14 September 2006

Abstract

The proposed algorithm suggests a lossless data compression with encryption technique

that depends on reversing the usage use of k-map. On the compressor side, the input bit-

stream is chopped into chunks of 16-bits each, and a minimised expression is found for

each of the chunks. The minimised expressions of the input data stream are stored.

Later, the Huffman tree algorithm is applied to the stored expressions “treating each

term as a single unit instead of treating each character as a single unit”. The obtained

Huffman code is used to convert the original file into a compressed one. A shuffle is

added to the Huffman tree which dramatically changes it, therefore it cannot be decoded

without the identically shuffled tree, this shuffle is based on a generated of key. On the

decompression side, the Huffman tree is used to retrieve the original file. The proposed

algorithm can be used for various file formats such as images, videos and text.

A full cycle for the proposed algorithm is to compress a file, encrypt it, decrypt it, and

finally decompress it back identically to the original file.

Keywords: Compression, Decompression, Huffman tree, k-map, Encryption,

Decryption.

ii

Acknowledgments

The completion of this dissertation was made possible through the support and kind

assistance of many people. To all of these, and many others, who contributed directly or

indirectly, I owe a debt of gratitude.

First, I must record my immense gratitude to my supervisor Professor Riccardo Poli

who patiently listened to many fragments of data and arguments and was able to make

the discussions very stimulating. His guidance and conclusive remarks had a

remarkable impact on my dissertation.

Further, I would like to express my deepest gratitude to Dr. Ramaswamy Palaniappan,

the second assessor of my dissertation, for his pertinent responses to all my queries and

questions.

I am also indebted to all my colleagues who supported me during this painstaking

academic year, especially Mohammad Al-Mulla and Abdullah Shata. Their

cheerfulness and sense of humour would always brighten a bad day; I would have never

made it without their unfailing support.

Last but not least, as always, I owe more than I can say to my exceptionally loving

parents whose blessings and nurture pave every step of my way.

Ahmed Jamil Kattan

14 September 2006

iii

Content

ABSTRACTABSTRACTABSTRACTABSTRACT .. I

ACKNOWLEDGMENTSACKNOWLEDGMENTSACKNOWLEDGMENTSACKNOWLEDGMENTS ...II

CONTENTCONTENTCONTENTCONTENT .. III

LIST OF TABLESLIST OF TABLESLIST OF TABLESLIST OF TABLES..V

LIST OF FIGURESLIST OF FIGURESLIST OF FIGURESLIST OF FIGURES.. VI

Chapter 1 Introduction

1.11.11.11.1 PRELIMINARIESPRELIMINARIESPRELIMINARIESPRELIMINARIES..1

1.21.21.21.2 DEFINITIONSDEFINITIONSDEFINITIONSDEFINITIONS...6

1.31.31.31.3 COMPRESSION CATEGORICOMPRESSION CATEGORICOMPRESSION CATEGORICOMPRESSION CATEGORIESESESES..7

1.41.41.41.4 ENCRYPTION CATEGORIEENCRYPTION CATEGORIEENCRYPTION CATEGORIEENCRYPTION CATEGORIESSSS ...8

1.51.51.51.5 ORGANISATION OF THE ORGANISATION OF THE ORGANISATION OF THE ORGANISATION OF THE THESISTHESISTHESISTHESIS ...9

Chapter 2 Background

2.12.12.12.1 HUFFMAN TREEHUFFMAN TREEHUFFMAN TREEHUFFMAN TREE..11

2.1.1 PSEUDOCODE FOR THE HUFFMAN TREE ALGORITHM...14

2.22.22.22.2 KARNUGH MAPSKARNUGH MAPSKARNUGH MAPSKARNUGH MAPS ..16

2.2.1 BOOLEAN ALGEBRA ..16

2.2.1.1 Minterms and Maxterms..17

2.2.2 THE MAPS TECHNIQUE..19

2.2.3 ANALYSIS OF 4-VARIABLE K-MAP..21

Chapter 3 The proposed algorithm

3.13.13.13.1 THE PROPOSED TECHNIQTHE PROPOSED TECHNIQTHE PROPOSED TECHNIQTHE PROPOSED TECHNIQUEUEUEUE ..24

3.23.23.23.2 COMPRESSION STAGECOMPRESSION STAGECOMPRESSION STAGECOMPRESSION STAGE ..25

3.2.1 THE BAD MAPS PROBLEM ...29

iv

3.2.2 PSEUDOCODE OF THE COMPRESSION PROCEDURE ...33

3.33.33.33.3 DECOMPRESSION STAGEDECOMPRESSION STAGEDECOMPRESSION STAGEDECOMPRESSION STAGE ...34

3.3.1 PSEUDOCODE OF THE DECOMPRESSION PROCEDURE ...36

3.43.43.43.4 ENCRYPTION STAGEENCRYPTION STAGEENCRYPTION STAGEENCRYPTION STAGE ..37

3.53.53.53.5 DECRYPTION STAGEDECRYPTION STAGEDECRYPTION STAGEDECRYPTION STAGE ..39

Chapter 4 Evaluation

4.14.14.14.1 OVERALL ALGORITHM STOVERALL ALGORITHM STOVERALL ALGORITHM STOVERALL ALGORITHM STAGESAGESAGESAGES...40

4.24.24.24.2 COMPRESSION PERFORMACOMPRESSION PERFORMACOMPRESSION PERFORMACOMPRESSION PERFORMANCE CRITERIANCE CRITERIANCE CRITERIANCE CRITERIA..40

4.34.34.34.3 ENCRYPTION STRENGTHENCRYPTION STRENGTHENCRYPTION STRENGTHENCRYPTION STRENGTH ..45

4.44.44.44.4 METHOD OF TESTINGMETHOD OF TESTINGMETHOD OF TESTINGMETHOD OF TESTING ..48

4.4.1 DATA SETS ..48

4.54.54.54.5 THE EXPERIMENTSTHE EXPERIMENTSTHE EXPERIMENTSTHE EXPERIMENTS ..50

4.64.64.64.6 OUTGOING RESULTSOUTGOING RESULTSOUTGOING RESULTSOUTGOING RESULTS ...51

4.6.1 ANALYTICAL EXPERIMENT ..51

4.6.2 EMPIRICAL EXPERIMENT..54

4.6.2.1 ASCII files ...55

4.6.2.2 Unicode files ..59

4.6.2.3 JPG files..62

Chapter 5 Conclusion

5.15.15.15.1 CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION ..66

5.25.25.25.2 FUTURE WORKSFUTURE WORKSFUTURE WORKSFUTURE WORKS...68

Appendices

APPENDIX A...69

 APPENDIX BAPPENDIX BAPPENDIX BAPPENDIX B.... ..73

BIBLIOGRAPHYBIBLIOGRAPHYBIBLIOGRAPHYBIBLIOGRAPHY ..83

v

List of tables

TABLE 1: MAINTERMS TABLE FOR 4 VARIABLES 17

TABLE 2: MAXTERMS TABLE FOR 4 VARIABLES 19

TABLE 3: DISTRIBUTION OF ALL POSSIBLE COMBINATION 22

TABLE 4:ALL POSSIBLE COMBINATIONS FOR 4 INPUT K-MAP 22

TABLE 5: NUMBER OF TERMS IN EACH POSSIBLE BLOCK 43

TABLE 6: RECOMMENDED ALGORITHMS (SOURCE: [20] NIST) 47

TABLE 7: ANALYTICAL EXPERIMENTS ON THE PROBABILTY DATA SET 51

TABLE 8: EMPIRICAL EXPERIMENT ON ENGLISH TEXT FILES 56

TABLE 9: EMPIRICAL EXPERIMENT ON UNICODE TEXT FILES "ARABIC LANGUAGE" 60

TABLE 10: EMPIRICAL EXPERIMENT ON JPG IMAGES 63

vi

List of figures

FIGURE 1: STEPS OF GENERATE HUFFMAN TREE..13

FIGURE 2: CONSTRUCTED HUFFMAN TREE ..13

FIGURE 3: DIGITAL CIRCUIT (F=AB + C`D)...17

FIGURE 4: 4 VARIABLES K-MAP ..20

FIGURE 5: K-MAP EXAMPLE (F= A’B + CD + AD) ..21

FIGURE 6: MAPPING A FILE INTO K-MAPS...26

FIGURE 7: SNAPSHOT FOR AN IR ..27

FIGURE 8: A COMPRESSION EXAMPLE FOR A TEXT FILE THAT CONTAIN THE WORD “HELP”28

FIGURE 9: BAD K-MAP EXAMPLE..29

FIGURE 10: SOLUTION STEPS FOR BAD MAPS PROBLEM..31

FIGURE 11: A FLOWCHART OF THE PROPOSED COMPRESSION TECHNIQUE ..32

FIGURE 12: : THE COMPLETE CYCLE OF COMPRESSION, ENCRYPTION AND DECRYPTION, DECOMPRESSION

FOR A 32-BIT MESSAGE CONTAIN THE TEXT “HELP”...35

FIGURE 13: A FLOWCHART OF THE PROPOSED DECOMPRESSION TECHNIQUE..35

FIGURE 14: SHUFFLING THE HUFFMAN TREE ...37

FIGURE 15: THE COMPLETE STAGES OF THE PROPOSED ALGORITHM ...40

FIGURE 16: THE TREE CASES OF THE INPUT STREAM..43

FIGURE 17: LINE CHART FOR THE PROBABILITY SET ..52

FIGURE 18: EMPIRICAL EXPERIMENT ON ENGLISH TEXT FILES "BAR CHART"...57

FIGURE 19: EMPIRICAL EXPERIMENT ON UNICODE TEXT FILES "BAR CHART"..61

FIGURE 20: EMPIRICAL EXPERIMENT ON JPG IMAGES "BAR CHART"..64

Chapter Introduction

1

1

1.1 Preliminaries

I am now going to begin my story

(said the old man), so please attend.

— ANDREW LANG

The Arabian Nights Entertainments (1898)

One of the paradoxes of the technology evolution is that despite the development of the

computer and the increased need for storing information, there is a lack of development

of compression techniques. As the evolution of computer systems progresses very

quickly, the amount of stored information will increase at the same fast rate.

There are several reasons for reliance on compression, one of the reasons is that the

demand for online storage increases at the same speed as storage capacity development,

a second reason is the limited bandwidth for some communication channels, such as

dialup internet connection, where the maximum bandwidth for this type of connections

is 56K/second [1]. The question is why is it important to reduce the size of data? The

answer to this is simple, to reduce costs; cost of data storage and the cost of data

transmission. This will save memory space which can be used to keep other

information, and save time in order to be able to transmit more data in less time.

Data compression aims to condense the data in order to reduce the size of a data file.

For example, an ASCII file is compressed into a new file, which contains the same

information, but it is smaller in size. The compression of a file into half of its original

2 Introduction

size increases the free memory that is available for use [2]. The same idea applies to the

transmission of messages over the internet with limited bandwidth channels.

A sequence related to stored data often contains some regularities, which motivate the

researcher to find a way to avoid these redundant sequences, for example in the English

language some of the most common words which are often repeated regularly are: "the,

is, a, of, for, …etc", and in videos which consists of a sub-sequence of frames, what can

happen in two sequenced frames? It is assumed, very little, the same could also be said

for pictures which contain regular sequences of pixels [3].

Thus, based on the fact that there are some repetitions in the stored data, we can suggest

a definition for the data compression as, the process of observing the regularities in a

sequence of data and then trying to reduce it. For example, let S = a sequence of data

where S ∊ ∑{0,1}
+
, F = Compression process, F

^
= Decompression process, and S

^
=

Compressed sequence of data where S
^
∊ ∑{0,1}

+
. So;

S
^
= F(S) can represent the compression process for a sequence of data (C1).

S = F
^
 (S

^
) can represent the decompression process for a compressed a data (C2).

So we can say that F
^
(F(S)) = S (C3).

The compression ratio = |S
^
| / |S|.

One of the factors that helps in developing a strong data compression technique is to

have a prior knowledge of the data to be compressed. According to this fact,

3 Introduction

compression researchers' tends to develop specialised compression techniques which

target a specific kind of data, for example there are some compression techniques which

are designed to work on text such as the Huffman tree [4],LZW [5], other techniques

designed to work on images, and others techniques specialised in multimedia, and so

on.

Data compression has a wide range of applications, especially in data storage and data

transmission [6][7], some of these applications include: (i) Many archiving systems

such as ARC [8], and PKARAC [9], and (ii) Telecommunications such as voice mail

and teleconferencing. Currently, communications through networks have resulted in

large amounts of data being transferred daily, especially multimedia data, which slows

the network due to the large sizes of its files. Therefore, the use of efficient compression

techniques will reduce the time of data transmission and the cost of communications

[10][11]. Compression has an important role in the spread of Web, since any

improvements will decrease the amount of transmitted data over the Internet.

Another area of research is Cryptography, which is known for protecting data. On the

encryptor side the plain text is encrypted using an algorithm, to produce another format

called cipher text, using an encryption key, while on the decryptor side, the cipher text

is decrypted using the same algorithm back to the plain text using a decryption key.

Cryptography comes from a Greek word which means “secret writing” [12], thus to

ensure privacy the information must be kept hidden.

4 Introduction

For example, let P= plaintext, C= cipher text, k =key, E= encryption process, and D=

decryption process. So;

C = Ek (P) can represent to mean that encryption plaintext P using key k (E1).

P = Dk (C), to mean that the decryption of C to get plaintext again (E2).

So we can say that Dk (Ek (P)) = P (E3). [39]

One of the fundamental of cryptography is to assume that the cryptanalyst knows the

methods used for the encryption and decryption. Thinking of the algorithm as a secret is

no harm any more.

Kerckhoff’s principle: All algorithms must be public; only the keys are secret.

Named after the Flemish military cryptographer Auauste Kerckhoff who first stated it in

1883[13].

Absolute security is not guaranteed, however there are some characteristics that identify

a strong cryptography system. The concealment of the key rather than the encryption

technique is one of the most important features of a strong cryptography system [14].

The length of the encryption key is another factor as this will leave huge possibilities

for the cryptanalyst to guess the right key [14]. The outcome from a strong

cryptosystem should be a random meaningless file, which makes it harder for the

cryptanalyst to find some regularities or relationship in the encrypted file [14]. If a

cryptography system satisfy these entire characteristic, yet it dose not mean that the

encryption system is 100% secure.

5 Introduction

With the increasing amount of data stored on computers, the need for security in

transmission and the reduction of the storage becomes greater everyday. Compression

aids encryption by reducing the file size, “the compression scheme shortens the input

file, which shortens the output file and reduces the amount of CPU required to do the

encryption algorithm, so even if there were no enhancement of security, compression

before encryption would be worthwhile.”[15]. However, concerning compression after

encryption it is stated; “If an encryption algorithm is good, it will produce output which

is statistically indistinguishable from random numbers and no compression algorithm

will considerably compress random numbers” [15]. “On the other hand, if a

compression algorithm succeeds in finding a pattern to compress out of an encryption's

output, then a flaw in that algorithm has been found. In the majority of encryption

utilities (e.g., PGP) the data is first compressed before it is actually encrypted” [15].

One of the famous methods to combine those two areas (compression and encryption)

was PGP; PGP combines some of the best features of both conventional and public key

cryptography [17]. PGP is a hybrid cryptosystem, when the user encrypts plaintext with

PGP. PGP first compresses the plaintext [17]. This will then save the amount of

transmitted data over the network, as well as storage space. “PGP, short for (Pretty

good privacy) is a public key encryption program originally written by Phil

Zimmermann in 1991. Over the past few years, PGP has got thousands of adherent

supporters all over the globe and has become a de-facto standard for encryption of

email on the internet”[17].

6 Introduction

So by combining the previous equations C1, C2, C3, E1, E2, and E3 we can conclude

that;

Ek[F(S)] = CS
^
 to represent the process of encrypt a compressed data (EC1).

F
^
 [Dk(Ek(F(S)))] = S (EC2).

1.2 Definitions

This section introduces some terms and concept in both compression and encryption,

which will be used in the rest of this thesis.

 In general, the compression process consists of two steps: (i) modeling and (ii) coding

[18]. And the difference between them is significant as the coding is the process of

replacing the input symbols with alternative symbols which should be smaller than the

input, however the output from this process is based on the model [18]. Another

common term which will often be used is Entropy, which refers to the quantity of

encoded information in a message [18]. Regarding cryptography, there are some

common terms which are often used among the researchers of that field; starting with

cryptosystems, which refers to the method of concealment of the data from

unauthorised access. Further, cryptography is the science of the design of

cryptosystems; the cryptosystems takes a message as input, this message is usually

called plain text, the result of the cryptosystem is a deformed representation of the

plain text called cipher text, and process of converting the plain text into cipher text is

7 Introduction

called encryption, while the process of converting the cipher text back to plain text is

called decryption, as the cryptography is the science of encrypting data from

unauthorised access, cryptanalysis is the science of breaking the encrypted data, each

cryptosystem uses a kind of password to protect the ciphered text, this password is

usually called the key[19]. The estimated period of a specific cryptosystem to keep the

data secure is called algorithm security life time [20].

1.3 Compression Categories

Data compression studies generally can be divided into two kingdoms: (i) lossy

(irreversible) and (ii) lossless (reversible). Lossy technique concedes a certain loss for

data in exchange with the high compression ratio. Generally lossy techniques are

applied for those kinds of data which accept some loss such as images, videos and

audios, as the human senses are imperfect, it will not notice the absence of few pixels in

a picture, or a few frames in a video, or even the absence of some background tones in

an audio file. On the other hand some kinds of data could not accept any loss (ex.

Database records, executable files and word processing files), otherwise the data will be

degraded, and this is where the lossless techniques have a role.

Lossless compression consists of those techniques that guarantee that the restored data

is identical to the original file after the compression/decompression cycle. Currently,

there are many lossless compression techniques and algorithms. Generally lossless is

implemented using two different types of modelling: (i) Statistical, and (ii) Dictionary

8 Introduction

based, in the first type the data is compressed using the probability of the characters

appearance, one of the most known algorithms which uses this type of modelling is the

Huffman coding. Meanwhile in the second type, a sequence of characters is replaced by

a shorter sequence, LZW is a well known algorithm which use this type of modelling

[18].

None of the previous algorithms use Boolean minimisation. The use of Boolean

minimisation has not been thoroughly investigated thus far. The first work was done by

Augustine and others [21]. The second one was done by Agauan and his colleagues

[22]. However, these two works are designed for images only and do not integrate

Boolean minimisation with other techniques.

1.4 Encryption categories

Encryption methods have historically have been divided into two categories: (i)

Substitution Ciphers, (ii) Transposition Ciphers [12]. In Substitution Ciphers each letter

or group of letters is replaced by another letter or group of letters, the oldest known

ciphers is the Caesar Cipher[12]; When Julius Caesar wanted to send a message to his

generals and he did not trust the messenger so he shifted each letter in the message by

three letter, C instead of A, E instead of B and so in (shift by 3) [23]. Transposition

Cipher, in contrast reorders the letters but to does not disguise them [12]. Although

there are many different cryptography systems, two principles are common among all

of them.

9 Introduction

Cryptography principle 1: Message must contain some redundancy.

Cryptography principle 2: Some method is needed to foil replay attacks. [12].

However, cryptography algorithms are classified into three classes: (i) Symmetric keys

algorithms, (ii) asymmetric keys algorithms, and (iii) hash algorithms [20]. In the

symmetric algorithms, the encryption/decryption cycle is completed by a key, this key

is used to convert the plain text to cipher text, and used once again to convert the cipher

text back to plain text. Nevertheless, this technique has a major disadvantage, which is

the difficulty of distributing the key safely over the networks [23]. The second type

covers this disadvantage by provide the concept of public keys, which was introduced

by Whitfield Diffie and Martin Hellman in 1976 [24]. This model use asymmetric keys,

one is public for anyone to use it to encrypt data, but they cannot decrypt it, however

only the person who has the corresponding private key can decrypt the data. Finally the

third type uses a hash function instead of key, this hash function generates a number

based on the input and this number is unique to that input.

1.5 Organisation of the thesis

As chapter 1 gave the reader a preliminary introduction of the problem domain and

showed the ability to link between compression and encryption, the structure of this

thesis will be as follows:

 Chapter 2 will introduce a sufficient explanation for each of the Huffman tree

algorithm and the Karnugh Maps technique.

10 Introduction

 Chapter 3 will introduce the proposed algorithm based on the described algorithms

in the previous chapter as it will focus on the dissertation thesis.

 Chapter 4 will provide dissections of the algorithm stages overall and show the

results of the algorithm after explaining the tests, and the tests environment. Finally this

thesis will end in chapter 5, which will include some conclusive remarks and show

where this technique can be expanded in the future.

Chapter Background

2

11

This chapter will provide a sufficient explanation for each of the Huffman tree algorithm and the Karnugh

Maps technique.

2.1 Huffman Tree

The Huffman tree was first introduced in 1952 by David Huffman [4]. The trick of this

algorithm is to give the most frequent characters which appear in file shorter codes than

those characters which have less frequency. The Huffman tree creates a unique variable

length code [18]. For example assume that we have a text file which contains the

following text:

"XXXXXXXXXXXXXXXXXXXXYYYYYYYYYYYYYYYYYYYZZZZZZZZZZZZZ".

The first thing the Huffman tree algorithm will do is scan the file and count the

repetition of each character, after that it will construct a descending probability table for

each character, as illustrated in (Figure 1 part A). The next step is to find the summation

of the first two entries in the probability table and construct a new entry. According to

our example, the first entry in the table was the character "Z" which was repeated 13

times in the file, while the second entry is "Y" which was repeated 19 times. 19 + 13 =

32. The new entry in the table will be now 32 instead of "Y" and "Z", and this entry will

refer to both Y and Z, as illustrated in (Figure 1 part B). Note that the new entry is

inserted in a position to let the probability table remain ordered in a descending way.

The same step is repeated again to add the first two entries in the table, 32 which was

12 Background

the summation of "Y" and "Z", and 20 which represent the repetition of character "X",

so 32+20 = 52 to construct a new entry in the table which will refer to both old entries

(20 and 52), as shown in (Figure 1 part C). The question now is how will this tree

compress this text? In response to this question, we have to explain that after the

generation of the tree, the algorithm will theoretically stick a label on each edge of the

tree that links any two nodes together. Label 1 will be on all the right edges of the tree,

while label 0 will be on all the left edges of the tree, this illustrated in (Figure 2). It is

well known that computers represent each English character by 8-bits according to the

ASCII encoding system. Based on the previous example "X" was repeated 20 times,

"Y" 19 times, and "Z" 13 times. The total characters in the file is 20+19+13 = 52

characters, 52 * 8 bits = 416 bits stored in the computer, before apply the Huffman tree,

now lets see the difference after applying the Huffman tree. From (Figure 2) we can

conclude that the new coding for X = 0, Y=11, and Z=10. The new size for the file is

now (20*1) + (19 * 2) + (13*2) = 84 bits. In comparison with the original size 416, the

Huffman tree reduced 95% of the original file size. Each character has a unique code,

thus the Huffman tree can unambiguously decode the characters as it reads the streams

of the compressed file [18].

13 Background

X
 20

Y
 19

Z
 13

X 20

Y
 19

Z
 13

32

X
20

Y
19

Z
13

32

52

Part A

Part B

Part C

Figure 1: Steps for generating the Huffman tree

Figure 2: Constructed Huffman tree

14 Background

As with any algorithm, the Huffman tree suffers from some disadvantages. The

Huffman tree is a statistical method (see section 1.3), statistical methods (off-line) need

to pass over the input file once to gather the statistics, and once again to compress the

input file based on the first round, thus they leave an overhead that can be heavy, unlike

the adaptive methods (online) which works on the input file as they process it [25].

 Another disadvantage of the Huffman tree is that it usually requires transmitting a large

coding table on the decompression side as it is an essential requirement to decode the

data. For these reasons the Huffman tree has been developed by many researchers, and

many variation of Huffman coding have been published, some of them use the same

behaviour of the binary tree and others use a unique prefix code. One of the most

significant developments of the Huffman tree is the Adaptive Huffman tree [26].

2.1.1 Pseudocode for the Huffman tree

algorithm

Compression algorithm (input: text_file)

Begin

Open the file to be compressed.

While (read != EOF)

{

// count the repetition of each character.

//Generate a descending probability table for all characters in

the file.

}

15 Background

While(probability_table.size != 1)

{

New_entry = probability_table[0] + probability_table[1]

New_entry.Right_link = probability_table[0]

New_entry.Left_link = probability_table[1]

 // Remove the first two entries from the probability table

 probability_table[0] = NULL

 probability_table[1] = NULL

 //insert the new entry

probability_table.insert(New_entry)

//reorder the table in descending order

probability_table.sort(descending)

}

Huffman_tree = probability_table[0]

Return Huffman_tree

End

Decompression Algorithm (input: compressed file)

Begin

While(compressed_file != EOF)

{

//Read 1 bit from the compressed_file

compressed_file.read(1, buffer)

if(buffer == 1)

{

Huffman_tree.Walk_to_Right_node;

If(Huffman_tree == leaf node)

Output_file. Print(leaf node)

}

(buffer == 0)

{

Huffman_tree.Walk_to_Left_node;

If(Huffman_tree == leaf node)

Output_file. Print(leaf node)

}

16 Background

}Return Output_file

 End

2.2 Karnugh Maps

2.2.1 Boolean algebra

Boolean algebra is algebra that deals with binary variables, it was first introduced in

1854 by George Boole [27]. The Boolean variables are designed by letters combined by

three basic logic operations (AND, OR, NOT) [28]. The Boolean expression is

identified by a sequence of Boolean variables. The bigger representation of the Boolean

expressions is the Boolean function which is formed by combination of Boolean

expressions. Normally the output of a Boolean function is 0 or 1. For example if we

have the following Boolean function: F(A,B,C,D) = AB+C`D then AB+C`D is an

expression which consists of two parts, AB and C`D which usually called terms [28]. A

Boolean function can always be represented in a truth table. The truth table

representation of a function will show all the possible combinations of the Boolean

variables and the output result of the function in each case. As the most important

implementation of Boolean algebra is in digital computing and computer chips, a

Boolean function can be transformed into a digital circuit which is composed of AND,

OR, and NOT gates [28], as illustrated in (Figure 3.).

17 Background

Figure 3: Digital circuit (F=AB + C`D)

2.2.1.1 Minterms and Maxterms

There are two standard forms to represent a Boolean function: (i) product of terms, and

(ii) sum of terms [28].This thesis is interested in four variables minterms. Therefore

most of the examples will focus only on this category. The product of terms usually

represents one combination of the Boolean variables in the function truth table which

called minterm, and it referred to as mj where m is the minterm expression and j is the

decimal equivalent of the Boolean variables combinations in the minterm truth table.

For example consider the following table (Table1):

A B C D Symbol m0 m1 m2 m3 m4 m5 M6 M7 M8 m9 m10 m11 m12 m13 m14 m15
0 0 0 0 m0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 m1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 m2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 m3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 m4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1 m5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 m6 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 1 1 1 m7 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 0 m8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

1 0 0 1 m9 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 1 0 m10 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 0 1 1 m11 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

1 1 0 0 m12 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

1 1 0 1 m13 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 1 1 0 m14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 1 1 1 m15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 1: Mainterms table for 4 variables

18 Background

It is observable from the previous table that minterm is an expression which is equal to

1 and it always takes the form of the product of Boolean variables, for example m15 =

ABCD. We can write a Boolean function on the form of F(ABCD) = ∑ m(1, 3, 7)

meaning that function F equals minterms expression 1, 3, and 7. The complete opposite

of the minterm is the maxterm. The sum of terms is usually called the maxterm. The

symbol Mj is used to refer to a maxterm expression, where M is the maxterm expression

and j is the decimal equivalent of the Boolean variables combination in the maxterm

table, an example of four variables of the maxterm truth table is illustrated in (Table 2).

We can find the opposite observation of (Table1) in (Table2), where the maxterm

expressions are always equal to 0. Maxterms always take the form of the summation of

the Boolean variables, for example M15 = A+B+C+D. Same as minterms, we can write

a Boolean function on the form of F(ABCD) = ∏ M(1, 3, 7) meaning that function F

equal maxterms expression 1, 3, and 7. Since any Boolean function can be transformed

into a truth table (see section 2.1.1), we can conclude that any Boolean function can be

represented as the sum of minterms.

19 Background

A B C D Symbol M0 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15
0 0 0 0 M0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 M1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 0 M2 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 M3 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 0 M4 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 M5 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

0 1 1 0 M6 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

0 1 1 1 M7 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

1 0 0 0 M8 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

1 0 0 1 M9 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

1 0 1 0 M10 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

1 0 1 1 M11 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

1 1 0 0 M12 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1 1 0 1 M13 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

1 1 1 0 M14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

1 1 1 1 M15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Table 2: Maxterms table for 4 variables

2.2.2 The Maps technique

The Boolean function complexity is completely related to the Boolean expressions, thus

it is important to simplify the function in order to minimise it, and save its cost.

However this simplification should not change the meaning of the function, for example

let us consider function F1= A`B`C`D` + AB`C`D`, after manipulate of this function by

the Boolean algebra rules, we get F2= B`C`D`, where F1 = F2 and F2 has less

variables.

The maps technique is a straightforward method for simplifying Boolean functions.

Usually this method is called K-map, or Karnugh map [28]. There are different sizes for

the k-maps such as: the two variables k-map which is designed to minimise those

functions that have two variables in its Boolean variables set, and the three variables k-

20 Background

map for three variable functions, and so on. However this thesis is interested in the four

variables k-map so all of the examples and the analysis in the rest of this dissertation

will focus only on this category of k-maps.

K-map is a technique for presenting Boolean functions in its optimal form. It comprises

of a box for every variable (represented by a column) in the truth table. All the inputs in

the map are arranged in a way that keeps Gray code true for every two adjacent cells

[29]. Each box in the k-map represents one minterm, the combination of the row and

the column values can identify that minterm value, for example the value of the third

column is 11 and the value of the first row is 00, so the combination of them is 0011

which is equal to the decimal value 3, this mean that the minterm in the third column

and the first row is m3. (Figure 4) illustrated 4 variables k-map.

Figure 4: 4 variables k-map

Some of these squares will take the value 1 if and only if the function output is 1 in the

corresponding minterm, otherwise it will take the value 0. The idea of k-map

minimisation is to group an even number of adjacent squares (horizontally and

vertically) that hold the value of 1. As the k-map columns and rows are numbered

21 Background

according to Gray code, this mean that any two adjacent squares will be different only

in one bit or one variable in the corresponding minterm, even those squares on the

edges of the map. Therefore grouping the adjacent squares lead to avoid the different

bits or alternatively the different variables, and thus minimise the Boolean expression.

A visual example is illustrated in (Figure 5).

Figure 5: K-map example (F= A’B + CD + AD)

The squares can be grouped as the flowing: one square represents four variables, two

squares represents three variables, four squares represents two variables, eight squares

represents one variable and the biggest group can be made is 16 square which

represents 1 or 0 [30]. The covered minterm in the map called prime implicant if it

cover the maximum possible of adjacent 1's, and called essential prime implicant if

there only one unique way to cover it by a prime implicant [30].

2.2.3 Analysis of 4-variable K-map

Since this thesis will focus on the 4-variables k-map, as it will be used in the proposed

compression algorithm, this section will provide some observation on this category of

k-maps.

22 Background

The four variables k-map is composed of 16 bits, thus there are 2
16

possible

combinations which might be filled into the map. The four variables k-map simplifies a

four variables Boolean function, assuming that the variables are (A, B, C, D). The

function's expressions will be composed of a combination of these variables

complemented or un-complemented. The minimised term might be composed of 1, 2, 3

or 4 variables, thus the total number of possible combinations is 82 distinct terms. For

example, the number of different terms that contain exactly one variable is 10 out of 82

terms. For the input variables (A, B, C, D), the set S1 that contain exactly one variable

will be S1= {A, A`, B, B`, C, C`, D, D`, 0, 1}. The distribution of these 82 expressions

and the number of variables is illustrated in (Table3).

1-variable 2-variables 3-variables 4-variables No. of terms
10 24 32 16

Table 3: Distribution of all possible combination Source:[39]

Following is (Table 4) which contains all the possibilities of the minimised terms with

the corresponding distinct variables.

1-varaible 2- variables 3- variables 4- variables

A AB A`D CD ABC AB`D A`CD B`C`D ABCD A`BC`D
B AB` A`D` CD` ABC` AB`D` A`CD` B`C`D` ABCD` A`BC`D`

C A`B BC C`D AB`C A`BD A`C`D ABC`D A`B`CD

D A`B` BC` C`D` AB`C` A`BD` A`C`D` ABC`D` A`B`CD`

A` AC B`C A`BC A`B`D BCD AB`CD A`B`C`D

B` AC` B`C` A`BC` A`B`D BCD` AB`CD` A`B`C`D`

C` A`C BD A`B`C ACD BC`D AB`C`D

D` A`C` BD` A`B`C` ACD` BC`D` AB`C`D`

0 AD B`D ABD AC`D B`CD A`BCD

1 AD` B`D`

 ABD` AC`D` B`CD`

A`BCD`

Table 4:All possible combinations for 4 input K-map Source:[39]

23 Background

These are the only possible terms that can be generated from the 4-variable K-map.

Note that a set of these terms will constitute the expressions of the Boolean functions.

Chapter The proposed algorithm

3

24

This chapter will introduce a sufficient explanation for the different stages of the proposed algorithm

based on the described algorithms in the previous chapter.

3.1 The proposed technique

This thesis proposes a new technique to compress data and encrypt it. The proposed

technique is based on combining some independent algorithms.

 Dissertation thesis: a combination between each of the static Huffman tree

algorithm, which is used for text compression and the 4-variables k-map technique,

which is used for logic digital minimisation, to invent a new lossless compression

algorithm, a manipulation of the Huffman tree was added to encrypt the compressed

file.

The use of Boolean minimisation has not been thoroughly investigated thus far. The

first work was done by Augustine and others [21]. The second one was done by Agauan

and his colleagues [22]. However, these two works are designed for images only and do

not integrate Boolean minimisation with other techniques.

The proposed algorithm suggests a lossless data compression with encryption technique

that depends on reversing the usage use of k-map. On the compressor side, the input bit-

stream is chopped into chunks of 16-bits each, and a minimised expression is found for

each of the chunks. The minimised expressions of the input data stream are stored.

25 The proposed algorithm

Later, the Huffman tree algorithm is applied to the stored expressions “treating each

term as a single unit instead of treating each character as a single unit”. The obtained

Huffman code is used to convert the original file into a compressed one. A shuffle is

added to the Huffman tree which dramatically changes it, therefore it cannot be decoded

without the identically shuffled tree, this shuffle is based on a generated of key. On the

decompression side, the Huffman tree is used to retrieve the original file. The proposed

algorithm can be used for various file formats such as images, videos and text.

A full cycle for the proposed algorithm is to compress a file, encrypt it, decrypt it, and

finally decompress it back identically to the original file.

3.2 Compression stage

Although the computer provides readable data for humans, such as images, videos and

documents, data is stored inside the computer as a stream of 0's and 1's.The proposed

method reads any input file, which consists of 0's and 1's, then starts processing every

16-bit (2 bytes) as one block. Each block will be used to fill in a 4-variables k-map and

then find the minimal expressions for that block. Between each two k-maps there is a

separator character "-". This process is illustrated in (Figure 6).

26 The proposed algorithm

Figure 6: Mapping a file into k-maps

Consequently the binary data is converted into a big collection of Boolean functions

separated by a dash character. Fortunately the 4-variables k-map produces only 10

distinct variables, and 82 distinct terms (see section 2.2.3), therefore this process will

convert the binary data into a limited set of characters. These collections of Boolean

functions that have been produced by the k-maps will be called Intermediate

Representation or IR, as it is neither yet the compressed file nor the original file (the file

to be compressed). (Figure 7) shows a snapshot for an IR, note that a dash character

separates every two subsequent Boolean functions.

Snapshot of a file

0001011010111010101010101010101011111000111010101111110001

0101101011101010101010101010101111100011101010111111000101

0001011010111010101010101010101011111000111010101111110001
0100010110101110101010101010101010111110001110101011111100…..

…………..

0

1

0

1

1

0

1

0 1

0

1

0

0

1

0

1

00 01 11 10

00

01

11

10

AB

CD

0

1

0

1

1

0

1

0 1

0

1

0

0

1

0

1

00 01 11 10

00

01

11

10

AB

CD

0

1

0

1

1

0

1

0 1

0

1

0

0

1

0

1

00 01 11 10

00

01

11

10

AB

CD

0

1

0

1

1

0

1

0 1

0

1

0

0

1

0

1

00 01 11 10

00

01

11

10

AB

CD

0

1

0

1

1

0

1

0 1

0

1

0

0

1

0

1

00 01 11 10

00

01

11

10

AB

CD

0

1

0

1

1

0

1

0 1

0

1

0

0

1

0

1

00 01 11 10

00

01

11

10

AB

CD

27 The proposed algorithm

Figure 7: Snapshot for an IR

It is not necessary for the size of the input file to be modules of 16 bits, however this

issue is not a big deal as the compression procedure will ignore the last remaining few

bits "15 bits at most", and put some flags to indicate these bits during the

decompression process.

The compression procedure will scan the IR representation to generate a lookup table.

This table will include the terms and its frequency in the IR. Owing to the fact that the

4-variables k-map produces 82 distinct terms (see section 2.2.3), the maximum size of

the lookup table might be 82 + 1 (the dash character), 83 different entries. However it is

not necessary that the lookup table will include the whole 82 elements, "product of

terms". Once the frequency lookup table is computed for the whole IR, the compression

procedure will pass it to the Huffman tree algorithm in order to generate a binary code

for each entry in the table. Applying the Huffman tree algorithm will result in a binary

tree, that holds only IR expressions in its leaves, ignoring the "+" sign between different

terms in any single Boolean function, and thus it will not be included in the Huffman

tree. The generated Huffman code will be used to convert the original file into a

compressed one by replacing the expressions in the IR by its corresponding code from

28 The proposed algorithm

the generated Huffman tree. A complete example for a compression process is

illustrated in (Figure 8).

H E L P

32- bit message
01001000 01000101 01001111 01011111 01001111010111110100100001000101

2 3

IR Representation Count the terms

11--

11ABD`ABD`

11AB`AB`

11CD`CD`

11C`DC`D

11AB`CD`AB`CD`

11A`BD`A`BD`

11A`B`C`DA`B`C`D

11--

11ABD`ABD`

11AB`AB`

11CD`CD`

11C`DC`D

11AB`CD`AB`CD`

11A`BD`A`BD`

11A`B`C`DA`B`C`D

000000--

101101ABD`ABD`

100100AB`AB`

110110CD`CD`

111111C`DC`D

001001AB`CD`AB`CD`

011011A`BD`A`BD`

010010A`B`C`DA`B`C`D

000000--

101101ABD`ABD`

100100AB`AB`

110110CD`CD`

111111C`DC`D

001001AB`CD`AB`CD`

011011A`BD`A`BD`

010010A`B`C`DA`B`C`D

010 + 011+001 000 111+110+100+101

Replace the term by its code

Map1 = 9 - Map2 = 12

Total = 24

bits

A B

C D 00 01 11 10

00

01

11

10

0 0 0

0 0 0

0 0 0

0 0

1

1

1

1 1

A B

C D 00 01 11 10

00

01

11

10

0 0 0

1 1 1

0 0 1

1 1

1

1

1

1 1

F =A`B`C`D + A`BC +

A`BD` + AB`CD`

F =A`B + C`D +

CD`+AB`C

A`B + C`D + CD`+AB`C -

A`B`C`D + A`BC + A`BD` + AB`CD`

4

5

6

Frequency table Huffman coding

Figure 8: A compression example for a text file that contains the word “HELP”

In the previous figure the word “HELP” was converted into its binary representation

and divided into chunks of 16 bits. The blocks have been filled into a 4-variables k–map

to assemble the IR representation. In the fifth step the frequency table has been

computed, and Huffman code has been generated based on the input from the frequency

table. Finally the generated Huffman code will used to convert the 32 bits message file

into a compressed one. Note that compress a 32 bits message is not a real life example.

However the purpose of this example is to show the different steps through the

compression procedure.

29 The proposed algorithm

3.2.1 The Bad maps problem

The proposed compression technique is based on the idea of converting the binary data

into a collection of Boolean functions using the 4-variables k-map, then employs the

feature that accompany this category of k-maps -which is, it produce a limited number

of expressions- to observe regularities in the produced expressions. Applying the

Huffman tree algorithm will reduce the size of the Boolean functions collection,

especially given that the surplus expressions will be high.

 The 4-variables k-map takes 16 bits and produces one Boolean function. In order to

reduce the size of the data, the process of replacing the terms by its equivalent code

from the Huffman for each Boolean function tree should cost less than 16 bits, however

in some cases the length of the encoded Boolean functions might be higher than 16 bits,

which leads to increasing the data size instead of reducing it, for example consider the

following sequence of data “0101101001011010”, which has the following k-map in

Figure 9: Bad k-map example

0

1

0

1

1

0

1

0 1

0

1

0

0

1

0

1

00 01 11 10

00

01

11

10

AB

CD

30 The proposed algorithm

(Figure 9). The output of this k-map is “F= A`BC`D` + AB`CD` + A`B`C`D + ABC`D

+ A`BCD + AB`CD + A`B`CD` +ABCD`”. Let us make an optimistic assumption, that

each product term in the previous sum of products is replaced by three bits. As a result,

it will take (8x3) = 24 bits. This means that there will be no saving with the

compression for those kinds of cases. However, in reality, some of the produced terms

might be replaced by more than three bits, depending on the generated Huffman tree.

This problem will be called the “bad maps” problem.

A solution for the bad maps problem has been proposed. This solution is launched as

soon as the compression procedure detects a bad map. The compression procedure will

keep track of those bad maps in a bad map table. This table will keep the maps bits and

a pointer to its location in the file. After the compression procedure finishes scanning

the input file, each bad map will be replaced by its corresponding index in the bad map

table. Thus we have to convert the indexes into binary numbers of the same length. An

example should explain these steps to enforce the understanding of this solution,

consider (Figure 10) where the red streams represents bad maps; as soon as the

compression procedure detects a bad map situation, it generates a bad map table, where

it keeps the red streams and the pointers which refer to them. At the lower part of

(Figure10) each red stream has been replaced by its corresponding index -blue stream-.

The indexes have been converted to binary numbers, and the length of these binary

numbers is the same for all of the bad maps table, note that the first index is "000" not

"00", or "0", the reason for this is that the bad maps table in that specific example has

seven cases, so an index of three bits has been used.

31 The proposed algorithm

Figure 10: solution steps for bad maps problem

In this specific example three bits are used instead of each bad map, however in the real

data this table can be large enough to form binary indexes bigger than three bits,

fortunately the length of these indexes will not exceed 15 bits, and thus a saving of at

32 The proposed algorithm

least one bit for each bad map will be provided by this solution. Unfortunately this

solution can leave an overhead that can be heavy, as it is difficult for the decompression

procedure to decode the bad maps correctly without the bad map table, however this

table is composed of several entries, each entry will occupy 16 bits, and thus will not

leave a big difference in the compression ratio, even in the small files as the size of this

table is related to the size of the input file; note that it is not necessary for this table to

exist. (Figure 11) illustrate a flowchart for the compression procedure.

Figure 11: A flowchart of the proposed compression technique

33 The proposed algorithm

3.2.2 Pseudocode of the compression

procedure

Compression procedure (Input: File)

Begin

 While (file.read != EOF)

{

 file.read_streams(buffer, 16)

 //a k-map class, receive a 16 bits and return a Boolean function

//append the results in IR representation

IR_representation += k-map.get_block(buffer)

}

 While (IR_representation.read != EOF)

{

//get the expressions form the IR

IR_representation.read(buffer)

//generate lookup table that contains the expression

frequencies

Lookup_table.count (buffer)

}

//generate the Huffman tree

Huffman_tree.generate(Lookup_table)

//create a new file

Create_file("Compressed")

While (IR_representation.read != EOF)

{

//encode each map in the IR representation and store the

size of the compressed map in integer variable

int size = Huffman_tree.encode(IR.get_onemap())

If(size > 16 bit) then

//apply bad maps table solution

else //append the compressed stream in the new file

}End

34 The proposed algorithm

3.3 Decompression stage

Based on the previous section, the events of the decompression procedure are

predictable. The decompression process requires that the receiver receives the Huffman

tree or Huffman code table and the bad maps table -if it is exist- at the beginning, which

contains the associated expressions and the corresponding code for them. This seems to

be an extra overhead. However, the received Huffman tree contains 83 nodes at most

(see section 2.2.3). It is necessary to have a Huffman tree for the decompression process

of the received file as it is difficult to decode the data correctly without it. The

decompression procedure reads the compressed streams in order to replace them with

the corresponding expressions using the Huffman tree. This process should consider the

bad maps in the bad maps table, if there are any, and the last few bits, which were not

enough to be filled into one k-map in the original file -if there are any-. In other words,

the decompression procedure will process the compressed stream by decoding it from

the Huffman tree, once it reaches a bad map location, it reads the index stream and

replaces it with the corresponding map from the bad maps table. The decompression

procedure should ignore the last few bits if the size of the original file was not modules

of 16 bit. As a result of this process, the received file will be converted back to an IR

representation. Finally from the IR representation we can get back to the k-maps and

consequently to the identical original stream. An overall example, which shows a

simple text file, containing the word "HELP", and its corresponding

compression/decompression cycle as presented in (Figure 12).

35 The proposed algorithm

H E L P

32-bit message
01001000 01000101 01001111 01011111 01001111010111110100100001000101

2 3

By using K-Map

A`B`C`D+A`BD`+AB`CD`

- C`D+CD`+A`B+AB`D

IR File

Compression

Decompression
Send with Huffman tree

A`B`C`D+A`BD`+AB`CD`- C`D+CD`+A`B+AB`D

Using Huffman tree

Count the terms

000-

1ABD`

1AB`

1CD`

1C`D

1AB`CD`

1A`BD`

1A`B`C`D

000-

1ABD`

1AB`

1CD`

1C`D

1AB`CD`

1A`BD`

1A`B`C`D

000-

101ABD`

100AB`

110CD`

111C`D

001AB`CD`

011A`BD`

010A`B`C`D

000-

101ABD`

100AB`

110CD`

111C`D

001AB`CD`

011A`BD`

010A`B`C`D

Term Freq

010 + 011+001 - 111+110+100+101

Replace the term by its code

0 1 0 1

0 1 0 0

1 0 0 0

0 1 0 0

0 1 0 1

0 1 0 0

1 0 0 0

0 1 0 0

AB

CD

00 01 11 10

00

01

11

10
1 1 1 1

0 1 0 1

1 1 1 1

0 1 0 0

1 1 1 1

0 1 0 1

1 1 1 1

0 1 0 0
CD

00 01 11 10

00

01

11

10

AB

Figure 12: : The complete cycle of compression, encryption and decryption, decompression for a 32-

bit message contain the text “HELP”

The decompression process is the complete opposite of the compression. (Figure 13)

illustrates a flowchart for this process.

Figure 13: A flowchart of the proposed decompression technique

36 The proposed algorithm

3.3.1 Pseudocode of the decompression

procedure

Decompression procedure (Input: compressed_file)

Begin

Create_file("Decompressed")

 While (compressed_file.read != EOF)

{

 file.read_streams(buffer, 1)

if(file.read_streams(buffer,1) = = bad_location)

{

//check the bad maps table

}

Else

{

Huffman_tree.decode(buffer)

if(Huffman_tree == leaf_node)

IR_representation+= Huffman_tree.print(leaf_node)

// append the "+" sign after decode each expression

IR_representation+= "+"

}

//return the IR_representation to binary streams

While (IR_representation.read != EOF)

{

String decompressed_stream = IR_representation.read_one_map();

//return the map to a binary stream

Decompressed+= decompressed_stream

}

}End

37 The proposed algorithm

3.4 Encryption stage

The Huffman tree plays an essential role in the proposed compression procedure (see

section 3.2). In the decompression process the Huffman tree is required as it is difficult

to decode the data correctly without it. The proposed encryption technique is based on

manipulating the weakest ring in the compression/decompression chain, which is the

Huffman tree. The idea of manipulation the Huffman tree in support of encryption was

introduced by Chung-E Wang [31], however the Huffman tree that the proposed

algorithm uses has different characteristics, as the generation of it is based on the IR

representation (see section 3.2). The Huffman tree is limited by 83 leaf nodes, therefore

the size of the Huffman tree will start from two leaf nodes to 83 leaf nodes.

A shuffle is added to the Huffman tree which dramatically changes it and it cannot be

decoded without the identically shuffled tree, this shuffle is based on a randomly

generated key, as illustrated in (Figure 14).

Figure 14: Shuffling the huffman tree

38 The proposed algorithm

As we can see from the previous diagram, the key value is “CBFE“, this mean that the

children of node C will replace each others location as well as the children for nodes B,

F and E. The code of node K in tree1 is 011 while the code for the same node in tree2 is

000, thus the difference in coding the same node after shuffling the tree code, results in

deformation of the tree structure, and cannot be decoded without the identically shuffled

tree. Owing to the fact that the lookup table encodes 83 different entries (see section

3.2), there are a huge number of possibilities to shuffle the Huffman tree.

In order to find all the possibilities of the key that might be generated, let us try to

decode a compressed stream without knowing the Huffman tree, we would try to guess

our own tree, starting with a tree which has two leaf nodes, until the tree is composed of

the whole 83 nodes, and in each tree we will try to put a different combination of terms

from the 82 that might be produced out of the k-map (see section 2.2.3). Thus the

number of possibilities to shuffle binary tree is 2
i-1,

 where "i" is the number of leaf

nodes in the binary tree. In each tree 83 different permutations might be possible.

Therefore we can say that the total number of possible encryption keys is;










=
∑

832

83 i

i
* 2

i-1
,

Where "i" define the number of leaf nodes in the tree.

The permutation of 








83

i
 =

)!83(!

!83

ii −

 forms a huge encryption key. However a huge

key does not necessary means absolute security. The proposed encryption technique

39 The proposed algorithm

provides a level of security for the compressed streams, unfortunately, like many other

encryption algorithms there is no guarantee of absolute security. Note that the proposed

encryption method is classified as a symmetric key encryption algorithm (see section

1.4), since the same key is used in both the encryption and decryption process.

3.5 Decryption stage

Based on the previous section, the events of the decryption process are predictable, as it

is the opposite of the encryption. The decryption process requires that the receiver

receives the key, in order to find where the nodes are which need to be shuffled back.

Note that the order of the received key is not important as shuffling the nodes back in a

different order does not make a difference. For example, based on (Figure 14), where

the key value was “CBFE”; if the receiver received the key in different order like

"FBCE", the decryption process would complete successfully. The decryption

procedure would go to the children of node F and shuffle them back, as well as node B,

C, and E. Once the procedure finished reading from the key, all the nodes will be

already shuffled back.

Chapter Evaluation

4

40

This chapter will trigger a dissection of the overall algorithm stages, showing the criteria that affect the

algorithm performance, and show the results of the algorithm after explaining the tests, and the tests

environment.

4.1 Overall Algorithm Stages

The proposed algorithm consists of four parts: (i) Compression procedure, where the

data to be compressed, (ii) Encryption procedure, (iii) Decryption procedure, and finally

(iv) Decompression procedure. The input file starts in the compression stage then

manipulates the Huffman tree to protect the data, on the receiver side for the Huffman

tree to be returned and decompress the data, a complete cycle of the proposed algorithm

stages is illustrated in (Figure 15).

Figure 15: The complete stages of the proposed algorithm

4.2 Compression performance criteria

There are three factors that distinguish the compression algorithms: (i) compression

ratio, (ii) compression time and, (iii) decompression time [3]. The ratio of the

compression can be measured by dividing the size of the compressed file over the size

of the original file; the smaller the result the better the compression ratio. The speed of

41 Evaluation

the compression and decompression processes can be measured by the number of kilo

bytes that have been processed per second as KB/s [3]. To invent a new compression

technique which does these three aspects perfectly is a very difficult mission. Therefore

the researchers are sometimes required to trade off one or two of these factors in order

to increase the other factors. It depends on the environment that the compression

algorithm works with. For example in the archiving system the data is to be compressed

often and it is rarely or never to be decompressed, in this case it is acceptable that the

decompression time be slower than the compression. In a contrary situation when users

download compressed data from a remote server, it is important that the decompression

time is faster than compression, as the data will be compressed only once and

decompressed many times. But sometimes the speed of both compression and

decompression is important. For example when the users send compressed data over the

network, it is important that both the sender and receiver can process the data in an

acceptable time.

Data compression has been defined as the process of observing the regularities in a

sequence of data and trying to reduce it (see section 1.1). Based on the suggested

definition, the proposed compression technique is based on the idea of unifying the

binary data into a limited set of letters in support of increasing the regularities. The 4-

variables k-map has been employed for this idea, as it produces a limited number of

terms and takes full independent chunks of data -2 bytes- (see section 2.2.3). With the

cooperation of the Huffman tree algorithm (see section 2.1), these regular expressions

can be minimised.

42 Evaluation

One of the most important factors in developing a strong compression technique is to

have a prior knowledge of the data (see section 1.1), however the proposed technique is

assumed to be universal. In other words it can work on any kind of data such as images,

text, and multimedia. Therefore it can not predict the input file.

Since the proposed algorithm works with a low level of the data, which are the binary

streams, the performance of the compression is related to the order of the 0's and the 1's

in the input file. There are three possibilities for the input stream. The most obvious one

is that the 1's are more than the 0's in a single block of data (2 bytes). A second is that

the 0's are more than the 1's. The third is that the block is a mix of 1's and 0's. Each of

these three cases has a different effect on the k-map performance. In the first case,

where the 1's are more than the 0's, the k-map will cover the maximum possibility of

adjacent 1's, and thus it produces a minimised Boolean function. In the second case,

where the 0's are more than the 1's, the k-map will cover only those 1's and produce a

small Boolean function, finally in the third case, where 1's and 0's are diverse, the k-

map will produce a big Boolean function. A Boolean function composed of eight

different expressions is the worst form it can be (see section 3.2.1). (Figure 16)

illustrates a sample of the three cases that might be filled into the k–maps.

43 Evaluation

Figure 16: The tree cases of the input stream

(Figure 16) shows a sample of the discussed three different cases, however there are 2
16

possible entries to the 4-variables k-map. A computer programme has been developed

to generate the whole 2
16

 possibilities and run a statistical analysis on the produced

Boolean functions. The results of this statistics have been illustrated in (Table 5).

1-term 2-terms 3-terms 4-terms 5-terms 6-terms 7-terms 8-terms Total No. of
terms 666 3948 18640 27064 12224 2536 432 26 216 = 65536

Table 5: Number of terms in each possible block

It observable from the previous table that there are:

• 1.1% Boolean function which consists of 1-term.

• 6% Boolean function which consists of 2-terms.

• 28.44% Boolean function which consists of 3-terms.

• 41.296% Boolean function which consists of 4-terms.

• 18.652% Boolean function which consists of 5-terms.

• 3.86% Boolean function which consists of 6-terms.

44 Evaluation

• 0.659% Boolean function which consists of 7-terms.

• 0.039% Boolean function which consists of 8-terms.

As the Huffman tree will encode only 83 entries (see section 3.2), the longest depth of

the generated tree is 7 bits. Note that it is not necessary that the encoded IR

representation include all 83 entries. Assume for simplicity that each term will be

encoded into 4 bits from the corresponding code that is generated by the Huffman tree.

Note that this assumption is not realistic as each term might have a different length.

Based on this assumption a Boolean function which is composed of 1-term will be

encoded by 4 bits, 2-terms encoded by 8 bits, 3-terms by 12 bits, 4-terms encoded by 16

bits and so on. This assumption shows that k-maps of size 5, 6, 7 and 8-terms will cost

more than 16 bits, and thus leave a frailer block compression. However the proposed

solution the "bad maps table" aids this problem (see section 3.2.1). From (Table 5) and

the previous assumption it is obvious that the probability of Boolean functions being

composed of 5, 6, 7 or 8 terms is 18.652% + 3.86% + 0.659% + 0.039% = 23.21%. In

other words there is a 23.21% chance that the proposed compression procedure will use

the "bad maps table" solution (assumption 1).

However to assume that each encoded term will cost 4 bits is a little bit pessimistic,

therefore we make a new assumption that each term will be encoded by 3 bits from the

corresponding code that are generated by the Huffman tree. Based on this new

assumption a Boolean function which is composed of 1-term will be encoded by 3 bits,

45 Evaluation

2-terms encoded by 6 bits, 3-terms by 9 bits, 4-terms will be encoded by 12 bits and so

on. With this new assumption the Boolean functions which are composed of 6, 7 or 8

terms are considered to be frailer blocks compression, as they will cost more than 16

bits.

 Once again the probability of the Boolean functions being composed of 6, 7 or 8 terms

is 3.86% + 0.659% + 0.039% = 4.588%. That means there is a 4.588% chance that the

proposed compression procedure will use the "bad maps table" solution (assumption

2). From assumption 1 and 2, there are;

%899.13
2

23.21588.4
=

+

that the proposed compression procedure will use the "bad maps table" solution. We

can conclude that the compression performance is completely related to the structure of

the binary representation of the file.

4.3 Encryption strength

As stated earlier there is no absolute security in the science of cryptography. Unlike

many others areas of computer science, cryptograph performance is measured by

breakability, thus it is hard to find out whether an algorithm provides a level of security

unless it is attacked. A cryptosystem that has never been attacked is not trustable.

However the researchers of that field have some criteria to measure the strength of the

encryption algorithms and compare their performance. The key size and the

randomness of the encrypted plaintext are two major factors to compare the

46 Evaluation

cryptosystems. Two algorithms are comparable if the efforts needed to break them are

the same or almost the same for a given resource [20]. The amount of time that required

to break a cryptosystem can be measured by calculating

2
k-1

T,

Where k is the size of the encryption key,

T is the amount of time for needed to encrypt a plaintext and compare its result with the

ciphertext[20].

The proposed encryption technique is classified as symmetric encryption key (see

section 3.4), since the same key is used for both encryption and decryption. As stated

earlier symmetric key encryption algorithms suffer from a major problem, which is the

difficulty of distributing the key safely over the networks, and thus asymmetric key

encryption has been introduced in order to cover this weakness. However most

asymmetric key algorithms are much slower than symmetric ones, therefore symmetric

methods are used to process long messages [32]. The key size of the proposed

encryption process is;










=
∑

832

83 i

i
* 2

i-1
 (formula 1).

Where "i" define the number of leaf nodes in the tree.

 The permutation of 








83

i
 =

)!83(!

!83

ii −

 (see section 3.4).

Several studies are made to estimate the cryptosystems security lifetime, these studies

considered many factors that might effect the lifetime such as the development of the

47 Evaluation

quantum computing, improved attack technology that might threat cryptosystems, and

the development of computers in the future. One of these studies is illustrated in (Table

6), this table has been suggested by NIST [20]. Note that this table focuses on

symmetric key algorithms only.

Algorithm security lifetimes

Symmetric key algorithms

Through 2010

min. of 80 bits of strength)

2TDEA23

3TDEA

AES-128

AES-192
AES-256

Through 2030

(min. of 112 bits of strength)

3TDEA

AES-128

AES-192
AES-256

Beyond 2030
(min. of 128 bits of strength)

AES-128

AES-192
AES-256

Table 6: recommended algorithms (source: [20] NIST)

After finding out the total number of possible keys, it is possible to include the

proposed encryption technique to (Table 5). To append the proposed encryption

technique does not means that this security life time estimation is accurate or realistic,

as there are many factors which have been ignored, however it gives a rough prediction

of the technique strength.

48 Evaluation

4.4 Method of testing

Like any other new algorithm which has been proposed, it should be tested and its

results compared with other existing methods. There are two ways to test a new

compression technique: (i) compress well known files and compare the results with

previous tests (Empirical), or (ii) create special files and compress them (Analytical)

[33] [3]. The first method is useful as it is easy to compare the results with other

algorithms and evaluate the general performance of the new technique in comparison

with the previous tests. However the second method is valuable as generating special

files is a useful technique to address the algorithm behaviour under certain situations,

which evaluates the algorithm performance. The two methods will be applied on the

proposed algorithm in order to investigate the performance and study the behaviour

under different circumstances.

4.4.1 Data sets

There are three well known data sets among the compression researchers: (i) Calgary

corpus which was introduced in 1989 [34], (ii) Canterbury corpus which was introduced

in 1997 [33] and, (iii) large Canterbury corpus [35]. These data sets are groups of files

that are chosen to cover most of the real files. In the first type, the data are quite old as

some of them are not in use these days [3]. The second data set was introduced at 1997,

a little bit of a newer collection, however this collection faced a major disadvantage, in

that all of its files are relatively small in size [3]. This problem was amended in the third

type where it is composed of three large files, two of them are English text and the last

49 Evaluation

one is binary data [3].However this data set faces some disadvantages, one of which is

that it has a limited collection of files (only three) which is not enough to provide a

sufficient test on an algorithm. Another reason is that two out of the three files are

English text, while in practice there are many other different languages than English [3].

As stated earlier the definition of the data compression, is the process of observing the

regularities in a sequence of a data and trying to reduce it (see section 1.1). Based on the

previous definition, this thesis suggests a new data set to measure the performance of

the proposed compression technique. The new data set will be called "probability

corps". This data set aims to study the behaviour of the suggested compression

algorithm. Binary streams were generated for experimental purposes in different sizes

such as: 1 KB, 10 KB, 512 KB, and 1 MB. Each of these files is composed of both 0's

and 1's, which are generated randomly with a specific probability. The new data set

manipulates the regularities of the data by changing the frequency of the 1's over the

0's, and thus put the compression procedure under different forms of regularities. For

example, if the probability of the generated file was 10%, that means the ratio of the

1's are only 10% in each block (16 bits) and the 0's are 90%, if the probability is 50%,

then half of the bits in each block (16 bits) are 1's and the rest are 0's. Finally if the

probability were 90%, this means that in each block there are 90% of 1's and 10% of

0's. Note that the suggested data set supports different forms of the three cases that

each block might have (see section 4.2–Figure 16). Applying the probability data set

will put the proposed compression procedure under stress, and thus will provide a

sufficient study of the algorithm behaviour under different circumstances.

50 Evaluation

4.5 The experiments

Experiments have been conducted in order to investigate the performance of the

proposed algorithm. In order to test this kind of algorithm, there are several factors

which have to be considered in the programming. One of them is the need to have full

control over the variables and the classes' objects. A strong debugging tool is needed in

order to provide a flexible trace of the code at the run time. Finally a fast complier is

needed to execute the written code. Therefore, based on the previous factors, C++ was

used as a programming language and Microsoft Visual studio 6.0 as a development tool

to develop the proposed algorithm and test it. The developed code has been tested on

computers which have the following specification:

• Windows XP operating system, Service Pack 2

• Intel Pentium 2.00 GHz processor

• 1 GB RAM

The aim of the proposed experiments is to investigate the performance of the

compression procedure. At this level the speed of the compression and decompression

procedures will be omitted, in order to focus the intention compression ratio. The

experiments are classified into two groups: (i) analytical, and (ii) empirical. The first

group will apply the probability data set (see section 4.4.1), in order to study the

behaviour of the compression procedure under different forms of regularities. The

second group will extend the experiments to real data and compare the results with

other techniques such as WinZip and WinRar.

51 Evaluation

4.6 Outgoing results

4.6.1 Analytical experiment

As illustrated earlier the analytical experiments aim to address the algorithm behaviour

under certain situations (see section 4.4). Five categories of files have been

implemented: 5MB, 1MB, 512 KB, 10 KB and 1 KB. In each of these categories there

are nine files which have been generated, starting from 10% until 90% probability of

1's, as illustrated in (Table 7).

Probability of 1's 5 MB 1 MB 512 KB 10 KB 1 KB

0.1 52.9587% 52.0591% 51.9778% 48.5486% 45.7886%

0.2 77.5244% 75.1642% 75.0928% 65.0024% 57.0923%

0.3 92.4778% 92.4805% 92.4477% 73.9136% 60.7178%

0.4 97.467% 97.4629% 97.4434% 80.7263% 57.9712%

0.5 98.3823% 98.3889% 98.3789% 80.7983% 57.5684%

0.6 97.5738% 97.5937% 97.5772% 80.3601% 56.6895%

0.7 95.3191% 95.367% 89.892% 73.5608% 56.9824%

0.8 86.2267% 86.2541% 81.7279% 67.8442% 58.2642%

0.9 72.8143% 69.197% 69.1746% 58.1519% 46.2036%

Table 7: Analytical experiments on the probabilty data set

For example the compression ratio of a 5MB file, which has probability 10% of 1's is

52.9587%, that mean the compression procedure saved 47.0413% of the 5MB. (Figure

17) illustrates a line chart for the previous table in order to observe the changes in the

compression ratio.

52 Evaluation

Ratio

0%

20%

40%

60%

80%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probabilities of 1's

R
a

ti
o

5 M

1 M

512 K

10 K

1 K

Figure 17: Line chart for the probability set

The x-axis shows the probabilities of the 1's on the generated files, while the y-axis

shows the ratio of the file size after applying the compression procedure. Each colour

addresses one category of files. For example, if the probability is 0.5, then mostly half

of the bits are 0's and the rest are 1's. If the probability is 0.4 it means that the number

of the 1's in a 16-bit block is approximately 0.4 * 16 ≈ 6 bits. We should report here

that we generate each bit of the 16-bit individually rather than generating the whole

number. The reason for this is to get more uniform and fair randomness. The random

number generator, which used, is listed in [36]. It is observable from the previous line

chart that the lines obtain a curved shape, where they reach their highest level when

they intersect with the 0.5 in the x-axis. This show that the compression ratio is worst as

the probability of 1's reaches 50%. For example the compression ratio of 5MB and 50%

53 Evaluation

of 1's is 98.3823%, meaning that there is only 1.6177% saving from the 5MB, which is

not encouraging. The reason for this is that when the blocks of the binary data have a

diverse order of 0's and 1's the k-maps will produce big Boolean functions. Note that a

Boolean function composed of eight different expressions is the worst form it can be in

(see section 3.2.1). Consequently the encoding process of the IR representation will

lead to less saving for each k-map, and thus the saving ratio will be little. However the

improvement of the compression ratio performance is associated with the density of the

binary streams. In other words whenever the probability of 1's goes far from the 50%

the ratio of compression will be better. The reason for that is the k-maps will produce

either a minimised Boolean functions if the 1's were more than the 0's or a short

Boolean functions if the 0's were more than the 1's. In both cases the encoding process

for the IR representation will result in a good saving for each k-map, and thus result in a

high compression ratio.

The compression ratio for large files such as 512 KB, 1 MB and 5MB are almost the

same. We have noticed that there are similarities in the compression ratio of the large

files. The reason for this is that large files generate almost the same Huffman code for

the 83 entries in the frequency lookup table. However the 1KB line behaves

differently from the rest of the categories, as the shape of the line is not in the form of

a curve. The reason for that is that 1KB is a relatively small file and it reflects the

behaviour of the algorithm under a specific circumstance. Owing to the fact that 1KB

is the smallest file in the experiment categories, the generated lookup table contains

less entries out of the 83 different entries (see section 3.2). Therefore the ratio varies.

54 Evaluation

We can note that the worst compression performance for the 1KB is with 0.3 where

the ratio is 60.7178%. Based on the previous reasons, we can conclude that 1KB is a

special case, due to its limited size. Based on the previous experiment, we can

conclude that the major factor that affects the compression ratio is the density of the

binary streams.

4.6.2 Empirical experiment

As illustrated earlier, the empirical experiments aim to address the algorithm behaviour

on the real data files, as it is easier to evaluate the general performance of the new

technique in comparison with the previous tests. The experiment included three

categories of data. The first category was ASCII code files which represent the English

text. The second was Unicode files which can represent different languages other than

English, such as Arabic and Chinese. The last category included images, which were

stored in the form of JPG. This category contained a collection of coloured and grey

images files. In the first two categories the results were compared with, WinZip [16],

WinRar [37], and the Huffman tree algorithm (see section 2.1). The JPG category has

been compared with only WinZip and WinRar. Note that both WinZip, and WinRar

were used in the experiment as they are the most common compression tools used

among the users, and they have thousands of adherent supporters all over the globe.

55 Evaluation

4.6.2.1 ASCII files

ASCII text files have been used to investigate the performance of the compression ratio

for general English text files. The experiment results are illustrated in (Table 8). Four

files were included in this category. The first column shows the algorithm that has been

used to compresses the file. The second column shows the file name that has been

compressed. The third one gives a brief description of the data in the file. Note that all

of these files are included in (Appendix B). Columns four, five and six are clearly

comprehended from the table. The last column illustrates some notes in each case if

needed, such as the number of expressions that were found in the IR representation.

Note that the maximum possible number is 83 different expressions (see section 3.2).

56 Evaluation

Algorithm File name Description
Size before

compression

Size after

compression
Ratio Note

Proposed

Compression
pghandbook0506

Essex postgraduate student

hand book
2127888 bits 1524940 71.6646% Expression = 69

WinZip pghandbook0506
Essex postgraduate student

hand book
2127888 bits 26%

WinRar pghandbook0506
Essex postgraduate student

hand book
2127888 bits 23%

Huffman coding pghandbook0506
Essex postgraduate student

hand book
2127888 bits 62.69%

Proposed

Compression
Assembler.txt

2117 lines of java code, "old

SP Assigmnet"
643088 bits 421808 65.591% Expression = 54

WinZip Assembler.txt
2117 lines of java code, "old

SP Assigmnet"
643088 bits 15%

WinRar Assembler.txt
2117 lines of java code, "old

SP Assigmnet"
643088 bits 15%

Huffman coding Assembler.txt
2117 lines of java code, "old

SP Assigmnet"
643088 bits 60.7%

Proposed

Compression
design doc.txt

Design Document from group

project course
1585872 bits 1039180 65.5272% Expression = 59

WinZip design doc.txt
Design Document from group

project course
1585872 bits 19%

WinRar design doc.txt
Design Document from group

project course
1585872 bits 17%

Huffman coding design doc.txt
Design Document from group

project course
1585872 bits 60.2%

Proposed

Compression
website_URL.txt text file that contain a URL 400 Bytes 178 Bytes 44.5% Expression = 30

WinZip website_URL.txt text file that contain a URL 400 Bytes 100% No compression

WinRar website_URL.txt text file that contain a URL 400 Bytes 100% No compression

Huffman coding website_URL.txt text file that contain a URL 400 Bytes 99%

Table 8: Empirical experiment on English text files

57 Evaluation

A bar chart has been extracted from the previous table in order to provide a clear

observation on the ratio differences between the algorithms, and analyse the results.

This chart is illustrated in (Figure 18).

English Text Files

0 10 20 30 40 50 60 70 80 90 100

My proposed Algorithm

WinZip

WinRar

Huffman coding

Ratio

website.txt

design doc.txt

Assembler.txt

pghandbook0506

Figure 18: Empirical experiment on English text files "Bar chart"

The x-axis shows the ratio of the file after applying the compression algorithm, while

the y-axis shows the compression technique that has been used. Each bar has a unique

colour in order to identify one file. For example the light blue bar represents the file

which has the name "pghandbook0506". The intersection of the bars with the x-axis

shows the ratio of the file after its compression. For example the compression ratio for

"pghandbook0506" by the proposed compression technique is 71.6646%, meaning that

it saved 28.3354% of the original file size, while the same file has a shorter bar in each

of the WinZip, WinRar and Huffman tree, which means that the compression ratios

there is better than the proposed compression technique for this file.

58 Evaluation

It is obvious from the previous chart that the proposed compression technique has a bad

compression ratio in comparison with WinZip, WinRar, and the Huffman algorithm.

For example the first file in (Table 8), which has the name "pghandbook0506", was

compressed until 26% and 23% by both WinZip and WinRar, and 62.69% by the

Huffman tree algorithm. However the ratio of compression by the proposed

compression technique was 71.6646% which is less than WinZip, WinRar, and the

Huffman tree by 45.6646%, 48.6646% and 8.9746%. The proposed compression

technique saved 28.3354% from the original file size, which is considered as a

relatively acceptable saving. However this ratio is low in comparison with other

techniques that are designed specially to compress text.

 In order to analyse these results a snapshot of the files was taken, to observe the binary

streams density. The snapshots are illustrated in (Appendix B). We conclude that the

reason for the low compression ratio for the English text files is that the ASCII code

occupies 8-bits for each character of the computer memory. Therefore each k-map will

process two characters as it receives 16 bits. Owing to the fact that English text is stored

as a ASCII representation, each 8-bit represents one unit, and each 4-variable k-map

will process 16-bit (two units). This issue puzzles the density of the binary streams of

the data. Another reason for the low ratio is that the number of possible characters in an

English text file is 26 as per the English alphabet plus special characters like: commas,

and brackets; estimating that the total number of possible characters that might appear

in an English text file is 60 characters. The proposed compression technique unifies the

binary data to 83 expressions (see section 3.2). Therefore the maximum size the

59 Evaluation

Huffman tree could be is 83 leaf nodes. While the Huffman tree algorithm encodes only

the characters that appeared in the input file, therefore the maximum size of the

Huffman tree there might be is 60 leaf nodes. Consequently the compression ratio

performance of a small Huffman tree is better than a large one.

The file which has the name "website.txt" and size 400 bytes shows a different

behaviour, than the other three files. After applying the proposed compression

technique it results in a compression ratio of 44.5% which means that it saved 55.5% of

the original size of the file which is better than WinZip, WinRar and the Huffman tree.

Linking that to the results of compressing 1KB in the analytical experiments (see

section 4.6.2), we can conclude that the proposed compression technique results in a

high compression ratio in the small files. Therefore the behaviour of the proposed

compression technique is different for the small files.

4.6.2.2 Unicode files

The second category that has been applied on this experiment was Unicode. Unicode

text files have been used to investigate the performance of the compression ratio for

different coding systems other than the ASCII. A text files that contained Arabic

language text have been used. The experiment results are illustrated in (Table 9). Three

files were included in this category. Note that all of these files are included in

(Appendix B).

60 Evaluation

Algorithm File name Description
size before

compression

Size after

compression
Ratio Note

Proposed
Compression

Arabic_text.txt arabic text, letter 17424 bit 9840 bit 56.4738 % Expressions =58

WinZip Arabic_text.txt arabic text, letter 17424 bit 39 %

WinRar Arabic_text.txt arabic text, letter 17424 bit 35 %

Huffman coding Arabic_text.txt arabic text, letter 17424 bit 60.46 %

Proposed
Compression

Arabic_news.txt Arabic text from news website 3436560 bit 4838900 bit 58.8287 % Expressions =52

WinZip Arabic_news.txt Arabic text from news website 3436560 bit 1 %

WinRar Arabic_news.txt Arabic text from news website 3436560 bit 1 %

Huffman coding Arabic_news.txt Arabic text from news website 3436560 bit 49.5 %

Proposed
Compression

Arabic_book.txt Arabic e-book 4618256 bit 2741140 bit 59.3545 % Expressions =28

WinZip Arabic_book.txt Arabic e-book 4618256 bit 29 %

WinRar Arabic_book.txt Arabic e-book 4618256 bit 3 %

Huffman coding Arabic_book.txt Arabic e-book 4618256 bit 48.4

Table 9: Empirical experiment on Unicode text files "Arabic language"

61 Evaluation

The structure of the table is the same as (Table 8). A bar chart has been extracted from

the previous table in order to provide a clear observation on the ratio differences

between the algorithms, and analyse the results. This chart is illustrated in (Figure 19).

Unicode Text Files

0 10 20 30 40 50 60 70

My proposed Algorithm

WinZip

WinRar

Huffman coding

Ratio

arabic book.txt

Arabic text from news website

arabic text, letter

Figure 19: Empirical experiment on Unicode text files "Bar chart"

Generally the compression ratio of the Unicode files are better than the ASCII code or

English text files, as the number of expressions that were found in the IR representation

for the Unicode files were less than the expressions that were found in the ASCII files.

However the performance of the compression is considered to be low in comparison to

WinZip, WinRar, and the Huffman tree. For example both WinZip and WinRar saved

99% of the file size which has the name "Arabic_news.txt", while the proposed

compression reduced its size until 43.5262%, which makes a 55.4738% difference

62 Evaluation

between WinZip, WinRar and the proposed compression. Saving 43.5262% of a file

size is consider to be a satisfactory achievement, however this is not the best result in

the text compression business. In order to analyse these results a snapshot of the files

was taken, to observe the binary streams density. The snapshots are illustrated in

(Appendix B). Once again the low compression ratio is due to the puzzled binary

streams. However the Unicode unites are occupying 16-bit of the computer memory

and each k-map process a block of 16-bit. This factor supports a better compression

ratio than the files which were stored in the ASCII code representation.

4.6.2.3 JPG files

The final category that has been applied to this experiment was JPG images. This type

of data has been used to investigate the performance of the compression ratio on the

images. The experiment results are illustrated in (Table 10). Five files were included in

this category, two of them are grey images, and the remaining three are coloured

images, in order to study the proposed compression behaviour under different images

which have different outward appearance. Note that all the images are included in

(Appendix B).

63 Evaluation

Algorithm File name Description
size before

compression

Size after

compression Ratio Note

Proposed Compression ahmed.jpg Face picture 40976 25703 62.727% Expressions =83

WinZip ahmed.jpg Face picture 40976 88%

WinRar ahmed.jpg Face picture 40976 83.34%

Proposed Compression mar17a6ey.th.jpg mix color picture 33808 23332 69.0133% Expressions =82

WinZip mar17a6ey.th.jpg mix color picture 33808 99%

WinRar mar17a6ey.th.jpg mix color picture 33808 99%

Proposed Compression Rhinozeros.jpg gray picture 710672 656004 92.3076% Expressions =82

WinZip Rhinozeros.jpg gray picture 710672 98%

WinRar Rhinozeros.jpg gray picture 710672 98.16%

Proposed Compression Black White 10.jpg gray picture 186384 161236 86.5074% Expressions =82

WinZip Black White 10.jpg gray picture 186384 89%

WinRar Black White 10.jpg gray picture 186384 89.42%

Proposed Compression Fractal.jpg mixed color image 1399824 524011 37.4341% Expressions =65

WinZip Fractal.jpg mixed color image 1399824 97%

WinRar Fractal.jpg mixed color image 1399824 97%

Table 10: Empirical experiment on JPG images

64 Evaluation

The structure of (Table 10) is not much different from the last two tables. Once again a

bar chart has been extracted from the previous table. In order to observe the change in

the compression ratio, this chart is illustrated in (Figure 20).

JPG files

0 20 40 60 80 100 120

My proposed Algorithm

WinZip

WinRar

Ratio

Fractal.jpg

Black White 10.jpg

Rhinozeros.jpg

mar17a6ey.th.jpg

ahmed.jpg

Figure 20: Empirical experiment on JPG images "Bar chart"

It is observable from the previous chart that the proposed compression technique has

superior performance on the images in comparison with both WinZip and WinRar.

After analysing the snapshots of the binary streams of the data, it is observed that the

streams density was clustered. The reason for that is any image would have some logic

in its appearance. Therefore the pixels that describe the image would take some

gradation to draw it. Consequently the binary stream that represents these pixels would

have the same gradation, and thus would reflect on the compression ratio performance.

65 Evaluation

For example let us consider the first file in (Table 10) which has the name "ahmed.jpg".

Note that it is a coloured image. WinZip saved 12% of its original size, WinRar saved

16.66%, while the proposed compression saved 37.273%. Generally the bar chart in

(Figure 20) shows shorter bars in the proposed compression technique section, than the

other two sections. Which mean that the proposed compression technique provides a

higher compression ratio than both WinZip and WinRar for the images.

We can conclude that the new compression technique provides a good compression

ratio when applied to images, due to the high density of its binary streams.

Chapter Conclusion

5

66

This chapter will conclude with some conclusive remarks regarding the proposed algorithm, and show

where it can be expanded in the future.

5.1 Conclusion

Writing the last chapter is much harder than writing the first one. In the first chapter the

objective was clear, as it paints a rosy picture of what the thesis intends to do. However

when the readers finishes reading and reaches the last chapter, there is no scope for lily

gilding. They have formed an opinion to validate the usefulness of this work.

We proposed a new universal lossless compression technique with a built-in encryption

by combining each of the static Huffman tree algorithm which can be used for text

compression and 4-variables k-map technique which is used for logic digital

minimisation. Then we changed the structure of the Huffman tree to encrypt the

compressed file. The proposed algorithm consists of four steps: Firstly compress a file,

secondly encrypt it, thirdly decrypt it, and finally decompress it back identically to the

original file.

This thesis suggested a definition for the compression as the process of observing the

regularities in a sequence of data and trying to reduce it. A problem of frailer blocks

compression arose with regard to the compression process. However this problem was

amended.

67 Conclusion

This thesis suggested a new data set to measure the performance of the proposed

compression technique which was called "probability corps". Experiments have been

applied in order to investigate the truth of what was proposed regarding the lossless

compression. The experiments were divided into two groups. The first was analytical,

which aimed to investigate the factors that affect the compression performance, and the

second was empirical, which explored the compression performance on three types of

data, ASCII files, Unicode files and JPG images. The results were compared with other

techniques. It has been concluded from the experiment’s results that the major factor

which affects the performance of the proposed compression technique ratio is the

density of the binary streams for the data. The experiments showed an acceptable

compression ratio for both of the ASCII and the Unicode files, however it was not as

effective as the other existing techniques. The experiments showed encouraging results

for the JPG files which was better than many other techniques.

The encryption strength and its measurement criteria were considered in this thesis. We

concluded that the key size and the randomness of the encrypted plaintext are two major

factors to compare the cryptosystems. This thesis proposed a symmetric encryption key

technique. The key size of the proposed encryption is;










=
∑

832

83 i

i
* 2

i-1

Where "i" define the number of leaf nodes in the tree.

The permutation of 








83

i
 =

)!83(!

!83

ii −

.

68 Conclusion

5.2 Future Works

Many interesting questions were raised during this thesis, and have been answered by

the discussions and the experiments that were reported. Some of these discussions have

raised further new challenging question which need additional efforts to investigate

their answers. The research on this algorithm can be expanded on the following points:

• Investigate different categories of k-maps, such as 2-variables and 3-variables k-

map.

• Expand the experiments to the multimedia data format such as AVI, Mpeg, and

WAV. As the binary streams density of these types of data is assumed to be

high.

• Study the 2
16

possibilities, and let the k-map decide whether to cover the 0's or

the 1's depending on the number of 1's in each block (Adaptive decision).

• Investigate the issue of recompressing the data.

• Study the compression/decompression speed.

• Investigate the bad maps problem and improve its solution.

• Apply different compression algorithms on the proposed data set "probability

corps"

Appendix

A

69

This appendix will include different snapshots of the probability corps data set showing

how the density of the binary streams varies, as the probability of 1's change.

• 10% of 1's

000000000010000010000000000000001000000000110000000000000000000000000000000000010000001000

000000000000011010010010100000001000000001100000000000000000000000100001000001000000001001

000000100000000000000000000100000000000000000100110100000000001000100000000000000000000000

000100000001000000001001000000000100000000000000000000000000000010000000000000010000000100

000101000001000000000000000101000010100000000000100110000000110000000000000000111010000000

010001000000010010100000001000000000000000001010010100100000000000001000000001000000000000

000000000001000001000000101000000010000000000000000001110000000000000000000000010000000000

000000000100100000000000000000000000000000010001000000000100000000000010000000001000010000

000000000000000100001010010110000010000000000000000000000000000000010000000000000000000001

000001000000000000000000000110000000010000100000000000010000000000000000010000000000000000

101000001000000100010000000001000000000000000010010000000100010000000000000000010010000000

000000000000000100001000011000000000000000000000000000010000000010000000001000100000000000

000110000000000000100000000000000000000001000000000001000000000010000000000000010000000000

000000000010001000100000000000010000000000000001010000000000010000100000000001100010000000

000000000000100000000100010010000000000010000010000000000000000000001000010000000100000001

• 20% of 1's

000000000010000010100001000000001000000001111000100000100111000010000000000000010000011010

100000010001011110010010100011101000100101101000000010000000000000100001000001000000001001

000101100000000000000000100110001000000000000100110100000001001000100000000000000010000000

000111100001001100001101000000001100000000000001000000000010001110000000000000011000001100

001111000101000000000000000101010010100110100000100110000000110000000001000010111010000000

010001000000010010100000101000100001000000011010110100100000000100011000000011000000000000

000000000101000001000000101000000010000001001000001001111000000000001000000100010000000000

011000000100100000001000000010000100000000010001000100000100000010000011000000001000010000

001000001000000100001011010110000010000000000000000000001000000000110000100000100111100001

001011000000010100000000001110000010110000101000000000011000000000000000010100000000000011

101010001000000100010000000001000000000010000010011001000100010000000000100000010110001010

000000000000000100001000011000001000000001000000000000010100000010000001001000100000010000

001110000000000000110000000000010110001001001000000001000000000010000000000000010000000010

000000000010001001100000001000010100000000000001110000000000010000100000000001100011000010

000011000000100000000100110010000000110011100010000000100001000000001100010001000100000001

001000011000001100000000000000100001000000011010100000100000000000100000010101010100000000

70 Appendix A

• 30% of 1's

000000010010000010100001000000001100000001111100110010101111000010000000001100011000011110

101100010001011110010010100011101000100111101100000010000000001000100001000101010001001001

000101100000000000000000110110001001000000000110110100000001001000100000000011000010000000

100111100001011100001101000001001100000000010001000000001010001110010000010000011000001100

001111000101001000000100000101010010100110100000100110000000110000000001001010111010000101

010001000000010010100000101000100001000000011010110100110000100111011000000011001000010000

000100000101010011000000101000010010001001101000101001111010001001001000000100010100000000

011000001100110010001000000010000100000000110001000110000100000010000011000000001000010000

101000011000000100101011010110000010001000100100001000001000110110111000100000100111100011

001011000010010110000000001111001010110000101100000000011000010000000000010110000000000011

101110001001000100010100101011000001000010000010011001010100010100100001100000010110001111

000000000000000100001000011000001001100001000010000001111100000010000001001000100010110000

001110100000000010110000100000011111001001001000000001010000000010000000100001110000000010

100100001010001001100000001000010100100000101001110000010000010101101001000001100011000110

000011010000100000000100110010000000110011100010001110100001000011001100010101000100000001

• 40% of 1's

010001011010000010100001000000001110000001111100110010101111000010000100001100011000011110

101100010001011110010010100011111000110111101100010010100000001000100001000101110001101001

000101100000000000000000110110011011100000100110110110010001001000100001000011000010001100

100111100001011101001101010001111100000000010001010101001010101110010000110010011000001100

001111010111001000000101001101010110100110100000100110100000111000000101001010111011000111

010001000001110010100000101000110001000100011011110100110100100111011100000011001001011100

100100000111010011000100101001110010011001101001101001111010001001001000000100110100000000

011000101110111010011011000010000100000000110001001110000100000010001011000000011101010000

101000011000000110101011010111000010001000101110001000001000110110111100100000100111100011

001011100010010110010000101111001010110011101101010100011001010110000000010110110010110011

101111001001000100011100111011000001001010010110011001010100010101100101100001010111011111

010000010000000101011001011000001001100001000010001001111100000010000001001000100010110000

101111101100000110110010100000011111011011001000010001110000000010000000100001111000001010

100100001111101011100000001001010100100010101101110000011010011101101001000001110011000110

110011010110100000000100110110000010111011110011001111101001000011001100011101000100000001

• 50% of 1's

011001011010000010100001010001001110000001111101110010101111000010100100101100011100011111

101100010001111110010010101111111000110111101110010010100000011000100001011101110001101101

001111101011010000000001110110011011100000100111110111011101001011100011000011000010001100

110111100001011101001101010001111101000000010001010101001010101110111100110010111100001100

001111110111001100100101001101110111110110101001101110100000111100001101001010111011010111

010001001001110010100010101000111001000101011111111111110101100111011100001011001001011111

100100000111010011000101101001111010011001101001101001111010001011001000000100110110100110

011100111110111010011011001010010110011000110001001110010100000010001011000011111101011000

101000011011000110101011010111010110011001101110001100001000110110111100100001100111101011

011011100010010110111010101111011010110011101101010110111001010110000010010111110010110011

101111101001010100011110111011100001011010010110011001010100110101101101100101011111011111

71 Appendix A

• 60% of 1's

011101011011001011100011010001001111001101111101110010101111100010100100101100011100011111

101100010001111110010010111111111000110111101110010010100110011101110001011101110001101101

011111101011010000000101110111111011110010101111110111111101011011100011000011000110001110

111111100001111101001101010001111101001000110001010101101110111110111110110011111100001100

011111111111001110100111001101110111110111101001101110100000111100001111011111111111010111

110001011001110010100110101000111001000111111111111111110101100111011100101011001001011111

110110010111010011000101101011111010011001101001101001111010011011001000001100111110100110

011100111110111010011011001010011110011000110001001110010100000010001111000011111101011000

101010011011010110101011110111010110111001111110001101001000110110111100110001100111101111

111011100010110110111010101111011110110111101101011110111001010110000110010111110110110011

111111101001010100111111111011101001011011010110111001010110110101111101110111011111011111

010000111100010101111001011010001011100011010010111101111111001010011001001100100010111100

101111101101000110110010100110111111111011001010011001111000000110001000100001111010011011

• 70% of 1's

111101011011001011100011011001001111001111111101111011101111101010101101101110011111011111

101110010011111111010011111111111010110111101110111110100110011101110011011101111001101101

011111111011110000110111110111111011111110101111110111111101011011100111010111000110001110

111111110001111101111101010011111101011100110011010101101110111110111110111111111100001100

011111111111101110101111001101111111110111101001101110100001111100001111011111111111010111

110111111011110010100110101000111111001111111111111111111101100111011101101011101001111111

110110010111110011000101101111111010011011101001101001111010011011001000001110111110100110

011100111110111010111111001011011110011101110001011110011100000111101111000011111101111000

101010111011111110101011110111010111111011111111011101001100110110111101111101110111111111

111011110010110111111110101111111110110111101111011110111101010110010110010111111110111011

111111101001010101111111111111101011011011010110111001010110111101111101110111011111111111

010000111100011101111001011110001011110011010010111101111111101111011001001101100010111100

• 80% of 1's

111111111111001011100011011011011111101111111101111111101111111010111101101110011111011111

101110111011111111110011111111111111110111101110111110110110011111110111011101111001111101

111111111011111110111111110111111011111110111111111111111101111111100111010111000110101110

111111110001111101111101010011111101111110111111010111101111111110111111111111111100001100

011111111111101110111111001101111111110111111001101110110001111100001111011111111111010111

110111111011110011100111101100111111111111111111111111111101100111011101101011101101111111

111110011111111111110101111111111011011111101011101111111011011011011100101110111111110110

011100111110111010111111011011011110011101110001011110011100000111101111000011111101111000

101011111011111110101111111111011111111011111111111101001100110110111111111101110111111111

111011110110111111111110101111111110111111101111111110111111010110010110011111111111111011

111111101001011101111111111111101011011111010111111011110110111101111101110111011111111111

010000111101011101111101011110001011110011110111111111111111101111011011001101101010111110

111111101111110110111011101111111111111111101011111001111000101111011011111101111111011111

72 Appendix A

• 90% of 1's

111111111111111111100011011111011111101111111101111111101111111111111111101111011111011111

101110111011111111111011111111111111110111111110111110110110111111110111011111111111111101

111111111011111111111111110111111011111110111111111111111111111111100111111111111110101111

111111111111111111111101010011111111111111111111010111111111111110111111111111111111111101

011111111111111111111111111101111111110111111101101110111101111101001111111111111111011111

110111111111111011110111101110111111111111111111111111111101110111111111101011101111111111

111110111111111111111101111111111011011111111011101111111111011011111101111111111111110111

011111111110111010111111111111111110111111111111011111011101010111101111000011111111111101

101011111011111110101111111111011111111111111111111111011111110110111111111101111111111111

1110111111111110110110111111111111111011

111111101001011101111111111111111011011111010111111011110111111111111101111111111111111111

010010111111011111111101111111011111110111110111111111111111111111011011001101111011111111

11101011111011111011101111011111111101111111011111

Appendix

B

73

This appendix will include snapshots for the files that were used in the empirical

experiments showing how the density of the binary streams varies, as the data format

changes.

1. ASCII files.

File Name pghandbook0506.txt

Size 260 KB

Source http://cswww.essex.ac.uk/intranet/students/handbook/pghandbook0506.PDF

Snapshot for the file:

010000110110111101101110011101000110010101101110011101000111001100001101000010100011000100

001101000010100100001101001111010011100101010001000101010011100101010001010011000011010000

101001010111010001010100110001000011010011110100110101000101001000000100011001010010010011

110100110100100000010101000100100001000101001000000100100001000101010000010100010000100000

010011110100011000100000010001000100010101010000010000010101001001010100010011010100010101

001110010101000010111000101110001011100010111000101110001011100010111000101110001011100010

111000101110001011100010111000101110001011100010111000101110001011100010111000101110001011

100010111000101110001011100010111000101110001011100010111000101110001011100010111000101110

001011100010111000101110001011100010111000101110001011100010111000101110001011100010111000

101110001011100010111000101110001011100010111000101110001011100010111000101110001011100010

111000100000001101010000110100001010010010010100111001010100010100100100111101000100010101

010100001101010100010010010100111101001110001000000010111000101110001011100010111000101110

001011100010111000101110001011100010111000101110001011100010111000101110001011100010111000

101110001011100010111000101110001011100010111000101110001011100010111000101110001011100010

111000101110001011100010111000101110001011100010111000101110001011100010111000101110001011

100010111000101110001011100010111000101110001011100010111000101110001011100010111000101110

001011100010111000101110001011100010111000101110001011100010111000101110001011100010111000

101110001011100010111000101110001011100010111000101110001011100010111000101110001011100010

111000101110001011100010111000101110001011100010111000101110001011100010111000101110001011

100010111000101110001011100010111000101110001011100010111000101110001011100010111000101110

74 Appendix B

File Name Assembler.txt

Size 79 KB

Source Self writing

Snapshot for the file:

001011110010101000001101000010100010000000101010001000000100000101110011011100110110010101

101101011000100110110001100101011100100010111001101010011000010111011001100001000011010000

101000100000001010100000110100001010001000000010101000100000010000110111001001100101011000

010111010001100101011001000010000001101111011011100010000000110001001100100010000011000011

110010001101000111101101111000010010110000100000001100100011000000110000001101000010110000

100000001100000011001000111010001100010011010000100000110101010000110100001010001000000010

101000101111000011010000101000001101000010100000110100001010000011010000101000101111001010

100010101000001101000010100010000000101010000011010000101000100000001010100010000001000000

011000010111010101110100011010000110111101110010001000000010000001001010011000010110110101

100101011011000010000001001011011000010111010001110100011000010110111000001101000010100010

000000101010001000000100000001110110011001010111001001110011011010010110111101101110000011

010000101000100000001010100010111100001101000010100000110100001010011010010110110101110000

011011110111001001110100001000000110101001100001011101100110000101111000001011100111001101

110111011010010110111001100111001011100010101000111011000011010000101001101001011011010111

000001101111011100100111010000100000011010100110000101110110011000010111100000101110011100

110111011101101001011011100110011100101110011001100110100101101100011001010110001101101000

011011110110111101110011011001010111001000101110001010100011101100001101000010100110100101

101101011100000110111101110010011101000010000001101010011000010111011001100001001011100110

File Name website_URL.txt

Size 400 byte

Source Self writing

Snapshot for the file:

000000000110100000000000011101000000000001110100000000000111000000000000001110100000000000

101111000000000010111100000000011101110000000001110111000000000111011100000000001011100000

000001100011000000000110111100000000011001000000000001100101000000000111000000000000011100

100000000001101111000000000110101000000000011001010000000001100011000000000111010000000000

001011100000000001100011000000000110111100000000011011010000000000101111000000000110001100

000000011100000000000001110000000000000010111100000000010010000000000001110101000000000110

011000000000011001100000000001101101000000000110000100000000011011100000000001011111000000

000110001100000000011011110000000001100100000000000110100100000000011011100000000001100111

00000000001011100000000001100001000000000111001100000000011100000000000000000000

75 Appendix B

File Name design doc.txt

Size 191 KB

Source Self writing

Snapshot for the file:

000011010000101001000100011001010111001101101001011001110110111000100000010001000110111101

100011011101010110110101100101011011100111010000001101000010100100011101110010011011110111

010101110000001000000011011000100000011010010110111000100000010000110100001100110100001100

000011001100100000001010000011001000110000001100000011011000101001000011010000101001000011

011011110111010101110010011100110110010100111010000010010100011101110010011011110111010101

110000001000000101000001110010011011110110101001100101011000110111010000100000001010000100

001101000011001101000011000000110011001010010000110100001010010000110110111101110101011100

100111001101100101001000000101001101110101011100000110010101110010011101100110100101110011

011011110111001000111010000010010100011001101111011100100110010000101100001000000100101001

101111011010000110111000001101000010100101000001110010011011110110101001100101011000110111

010000100000010100110111010101110000011001010111001001110110011010010111001101101111011100

100011101000001001010001100110111101110010011001000010110000100000010010100110111101101000

011011100000110100001010010100110111010001110101011001000110010101101110011101000111001100

111010000010010100000101111001011011110110010001100101011010100110100100101100001000000100

111101101101011011110110110001101111011011000111010100100000010000010110011001101111011011

000110000101100010011010010011101100001101000010100100001001100001011011000110110001101001

001011000010000001010100011101010110011101100011011001010011101100001101000010100100101101

100001011101000111010001100001011011100010110000100000010000010110100001101101011000010110

76 Appendix B

2. Unicode files

File Name Arabic_text.txt

Size 3 K

Source Self writing

Snapshot for the file:

111011111011101110111111110110001010100011011000101100111101100110000101001000001101100010

100111110110011000010011011001100001001101100110000111001000001101100010100111110110011000

010011011000101100011101100010101101110110011000010111011001100001100010000011011000101001

111101100110000100110110001011000111011000101011011101100110001010110110011000010100001101

000010101101100010110011110110001011100111011000101001111101100010101111110110001010100100

100000110110011000010111011000101011111101100110001010110110001011000100100000110110001011

100111011000101001111101100110000101001000001101100010100111110110011000010011011000101001

011101100010101111110110001010011111011000101100011101100010101001001000001101100010100111

110110011000010011011000101110011101100010100111110110011000010111011000101010010010000011

011001100001001101100110000100110110001010100011011000101110011101100010101011110110001010

011111011000101010100010000000101110001000000010000000100000001000000010000000100000001000

000010000000100000001000000010000000100000001000000010000000100000001000000010000000100000

001000000010000011011000101001111101100110000100110110011000010111011001100010001101100110

000010110110001011000100001101000010100010000000100000001000000010000000100000001000001101

100010100111110110011000010011011000101100111101100110000100110110001010011111011001100001

File Name Arabic_news.txt

Size 420 KB

Source http://www.alarabiya.net

Snapshot for the file:

111011111011101110111111001000000000110100001010110110001010111111011000101010001101100110

001010001000000010110100100000110110001010011111011001100001001101100010111001110110001011

000111011000101010001101100110001010110110001010100100101110110110011000011011011000101010

100010000000001101000010100000110100001010110110001011001111011001100010101101100110000011

110110011000100011011001100001100010000011011000101010001101100110001000110110001011001111

011000101110010010000011011001100001011101100010110100110110001010011111011000101110011101

100110000100001000001101100010100111110110011000010011011000101101001101100110000101110110

011000101011011001100001011101100010110001110110011000101000100000110110001010001111011001

100001100010000011011000101010101101100010110100110110001011100111011000101100010010000011

011000101010001101100010100111110110011000010011011001100000011101100010101110110110001011

000100100000110110011000010011011001100000111101100110001000110110011000011011011001100001

111101100010100111001000001101100010100011110110011000100011011001100001000010000011011000

101100111101100010111001110110011000100011011000101011111101100110001010110110001010100100

100000110110001010101011011001100001001101100010101010110110001010110111011001100000100010

000011011000101010001101100010100111110110011000010011011000101110011101100110000101110110

77 Appendix B

File Name Arabic_book.txt

Size 564 KB

Source http://www.saaid.net/book/8/1634.doc

Snapshot for the file:

111111111111111000001101000000000000101000000000000011010000000000001010000000000010011100

000110010001000000011001000010000001100100100000000110001100110000011000100000000000000010

011100000110010001000000011000111001000001100011000000000110001100010000011000100111000001

100010000100000110000011010000000000001010000000000000110100000000000010100000000001000101

000001100010110100000110010001010000011001001000000001100010111100000110001000000000000001

000101000001100010110100000110010001010000011000101111000001100010000000000000001101000000

011000100111000001100100001100000110001100010000011000001101000000000000101000000000000011

010000000000001010000000000010000000000000000011010000000000001010000000000010010100000110

010001000000011001001001000001100010000000000000001101010000011001001110000001100010111100

000110010100000000011001001010000001100100001000000110010011010000011000100000000000000100

010000000110001001110000011000100000000000000010101000000110010011100000011000101000000001

100101001000000110010001000000011001010000000001100100100100000110001000000000000001000101

000001100100100000000110001011110000011001010001000001100100111000000110001010100000011001

001111000001100100011100000110001110100000000000001101000000000000101000000000001000110000

011001000101000001100101000100000110001001110000011000100000000000000010100000000110010011

100000011000111001000001100101001000000110001011110000011001001111000001100000110000000110

001000000000000001000001000001100010010100000110010001100000011001001010000001100010000000

000000010001000000011001000101000001100010000000000000001000110000011001000011000001100100

011000000110010100100000011000100000000000000010001100000110001010100000011001001000000001

100100001000000110010100010000011001001110000001100101000100000110010011100000011000111001

000001100100111100000110010011110000011000100000000000000100101000000110010010000000011001

000101000001100010011000000110001100000000011000100000000000000010001100000110010001100000

78 Appendix B

3. JPG files
File name: ahmed.jpg

Size: 5.14 KB

Dimension: 120 X 150

 Source: self shooting

Snapshot for the file:

111111111101100011111111111000000000000000010000010010100100011001001001010001100000000000

000001000000010000000100000000101101000000000010110100000000000000000011111111111000010000

010111001100010001010111100001101001011001100000000000000000010010010100100100101010000000

000000100000000000000000000000000000000111000000000000111100000001000000100000000000000110

000000000000000000000000011000100000000000000000000000000001000000000001000000100000000000

010100000000000000000000000000011010000000000000000000000000000011001000000001000000100000

000000010100000000000000000000000000011111000000000000000000000000000001001100000010000000

110000000000000001000000000000000000000000000000010000000000001110000000000000000100010000

000000110000000000000001000000000000000000000000000000000000010000001100000000000000001000

010000000000110000000000000001000000000000000000000000000000000000001100000111000000010110

100110000111000001000000000000000001000000000000000000000000100100000000000000000000000000

000000000000000000000000000000000001000011011000010110111001101111011011100000000001000011

011000010110111001101111011011100010000001010000011011110111011101100101011100100101001101

101000011011110111010000100000010000010011011100110000000000000011001000110000001100000011

010100111010001100000011000100111010001100000011001000100000001100010011010000111010001101

000011010100111010001101000011100100000000000111100000000010011010100000100000010100000000

000000010000000000000000000000001111111000000001000000000000000010011101100000100000010100

000000000000010000000000000000000000000000011000000010000000000000000000000000100100000000

011100000000000001000000000000000000000000000011000000110010001100100011000000000011100100

000000001000000000000101000000000000000000000000000000111000000010000000000000000000000100

100100000000001000000000000101000000000000000000000000000010001000000010000000000000000000

000001100100010000011100000000000001000000000000000000000000000000000100000010000000110000

000000000010100100010000010100000000000000010000000000000000000000000011011000000010000000

000000000000000001100100100000101000000000000000010000000000000000000000000011111000000010

000000000000000000000010100100100000010100000000000000010000000000000000000000000100011000

000010000000000000000000000100100100100000101000000000000000010000000000000000000000000100

111000000010000000000000000000000101100100100000010100000000000000010000000000000000000000

000101011000000010000000000000000000000111100100100000001100000000000000010000000000000000

000000000000010100000000000000000000000000001001100100100000001100000000000000010000000000

000000000000000101100100000000000000000000000000001010100100100000010100000000000000010000

000000000000000000000101111000000010000000000000000001111100100100100000011100000000001111

79 Appendix B

File name: Rhinozeros.jpg

Size: 86.8 KB

Dimension: 650 X 473

Source:http://www.vs-

kitzbuehel.tsn.at/projekte/galerie/grafik/Rhinozeros.jpg

Snapshot for the file:

111111111101100011111111111000000000000000010000010010100100011001001001010001100000000000

000001000000010000000100000001001011000000000100101100000000000000000011111111110110110000

000001000011000000000000001100000010000000100000001100000010000000100000001100000011000000

110000001100000100000000110000001100000100000001010000100000000101000001010000010000000100

000001010000101000000111000001110000011000001000000011000000101000001100000011000000101100

001010000010110000101100001101000011100001001000010000000011010000111000010001000011100000

101100001011000100000001011000010000000100010001001100010100000101010001010100010101000011

000000111100010111000110000001011000010100000110000001001000010100000101010001010011111111

110110110000000001000011000000010000001100000100000001000000010100000100000001010000100100

000101000001010000100100010100000011010000101100001101000101000001010000010100000101000001

010000010100000101000001010000010100000101000001010000010100000101000001010000010100000101

000001010000010100000101000001010000010100000101000001010000010100000101000001010000010100

000101000001010000010100000101000001010000010100000101000001010000010100000101000001010000

010100000101000001010000010100000101000001010000010100000101000001010000010100000101000001

010011111111110000000000000000010001000010000000000111011001000000101000101000000011000000

010010001000000000000000100001000100000001000000110001000100000001111111111100010000000000

000111110000000000000000000000010000010100000001000000010000000100000001000000010000000100

000100000010000000110000

010000000101000001100000011100001000000010010000101000001011111111111100010000000000101101

010001000000000000000000100000000100000011000000110000001000000100000000110000010100000101

000001000000010000000000000000000000000101111101000000010000001000000011000000000000010000

010001000001010001001000100001001100010100000100000110000100110101000101100001000001110010

001001110001000101000011001010000001100100011010000100001000001000110100001010110001110000

010001010101010010110100011111000000100100001100110110001001110010100000100000100100001010

000101100001011100011000000110010001101000100101001001100010011100101000001010010010101000

110100001101010011011000110111001110000011100100111010010000110100010001000101010001100100

011101001000010010010100101001010011010101000101010101010110010101110101100001011001010110

100110001101100100011001010110011001100111011010000110100101101010011100110111010001110101

011101100111011101111000011110010111101010000011100001001000010110000110100001111000100010

001001100010101001001010010011100101001001010110010110100101111001100010011001100110101010

001010100011101001001010010110100110101001111010100010101001101010101011001010110011101101

001011010110110110101101111011100010111001101110101100001011000011110001001100010111000110

110001111100100011001001110010101101001011010011110101001101010111010110110101111101100011

011001110110101110000111100010111000111110010011100101111001101110011111101000111010011110

101011110001111100101111001111110100111101011111011011110111111110001111100111111010111111

111100010000000000000111110000000100000000000000110000000100000001000000010000000100000001

80 Appendix B

File name: Black White 10.jpg

Size: 22.7 KB

Dimension: 600 X 399

 Source: http://www.wmphotos.com/Gallery%20FILES/16-

Fine%20Art%20B&W/thumbnails/Black%20White%2010.jpg

Snapshot for the file:

111111111101100011111111111000000000000000010000010010100100011001001001010001100000000000

000001000000100000000100000000010010000000000001001000000000000000000011111111111011100000

000000001110010000010110010001101111011000100110010100000000011001001000000000000000000000

000000000000000001111111111101101100000000100001000000000000001000000001100000011000000110

000001100000011000001000000001100000011000001000000011000000100000000111000010000000110000

001110000010100000100000001000000010100000111000010000000011010000110100001110000011010000

110100010000000100010000110000001100000011000000110000001100000011000001000100001100000011

000000110000001100000011000000110000001100000011000000110000001100000011000000110000001100

000011000000110000001100000011000000110000001100000011000000110000001100000011000000110000

001100000011000000110000001100000000010000100100001000000010000000100100001010000010010000

101100001001000010010000101100001110000010110000110100001011000011100001000100001110000011

100000111000001110000100010001000100001100000011000000110000001100000011000001000100010001

000011000000110000001100000011000000110000001100000100010000110000001100000011000000110000

001100000011000000110000001100000011000000110000001100000011000000110000001100000011000000

110000001100000011000000110000001100000011000000110000001100000011000000110000001100000011

000000110011111111110000000000000000010001000010000000000110001111000000100101100000000011

000000010010001000000000000000100001000100000001000000110001000100000001111111111101110100

000000000001000000000000100110111111111100010000000001101000100000000000000000000000000000

0111000000010000000100000001000000010000000100

000000000000000000000001000000010100000011000000100000011000000001000000000000011100001000

000010010000101000001011000000010000000000000010000000100000001100000001000000010000000100

000001000000010001000000000000

001000000011000001000000010100000110000001110000100000001001000010100000101100010000000000

000000001000000001000000110000001100000010000001000000001000000110000001110000001100000100

000000100000011000000010011100110000000100000010000000110001000100000100000000000000010100

100001000100100011000101000001010100010000011000010011011000010010001001110001100000010001

010000110010100100011010000100000111000101011011000101000010001000111100000101010010110100

011110000100110011000101100110001011110000001001000111001010000010111100010010010101000011

001101000101001110010010101000101011001001100011011100111100001000110101010001000010011110

010011101000111011001100110110000101110101010001100100011101001100001111010010111000100000

100000100110100000110000100100001010000110000001100110000100100101000100010101000110101001

001011010001010110110100110101010100101000000110101111001011100011111100111100010011010100

111001001111010001100101011101011000010110010101101001011011010111000101110101011110010111

110101011001100111011010000110100101101010011010110110110001101101011011100110111101100011

011101000111010101110110011101110111100001111001011110100111101101111100011111010111111001

111111011100111000010010000101100001101000011110001000100010011000101010001011100011001000

81 Appendix B

File name: mar17a6ey.th.jpg

Size: 4.15 KB

Dimension: 152 X 167

Source:

http://img185.imageshack.us/img185/8418/mar17a6ey.th.jpg

Snapshot for the file:

111111111101100011111111111000000000000000010000010010100100011001001001010001100000000000

000001000000010000000100000000010010000000000001001000000000000000000011111111110110110000

000001000011000000000000101000000111000001110000100000000111000001100000101000001000000010

000000100000001011000010100000101000001011000011100001100000010000000011100000110100001101

000011100001110100010101000101100001000100011000001000110001111100100101001001000010001000

011111001000100010000100100110001010110011011100101111001001100010100100110100001010010010

000100100010001100000100000100110001001101000011100100111011001111100011111000111110001001

010010111001000100010010010100001100111100010010000011011100111101001111100011101111111111

110110110000000001000011000000010000101000001011000010110000111000001101000011100001110000

010000000100000001110000111011001010000010001000101000001110110011101100111011001110110011

101100111011001110110011101100111011001110110011101100111011001110110011101100111011001110

110011101100111011001110110011101100111011001110110011101100111011001110110011101100111011

001110110011101100111011001110110011101100111011001110110011101100111011001110110011101100

111011001110110011101100111011001110110011101100111011001110110011101100111011001110110011

101111111111110000000000000000010001000010000000000010100111000000001001100000000011000000

010010001000000000000000100001000100000001000000110001000100000001111111111100010000000000

000111000000000000000000000000010000010100000001000000010000000100000000000000000000000000

0001010000000000000010000000110000

010000000110000001110000000100001000111111111100010000000000001110100001000000000000000000

010000001100000011000000100000001000000111000001100000010000000110000000100000001100000000

000000000000000000000000000000010000000000000010000000110000010000000101000100010001001000

100001000001100011000100010011000101000010001001000001010100010110000110010001001000110011

001001000010011100010111001010110001000101010100001101010011100100100000011101010010011000

101000000110000010101000010001011000100100001100110110001111000001111111111100010000000000

000110100000000100000000000000100000001100000001000000010000000000000000000000000000000000

00110000010000000000000000100000

010100000001000001101111111111000100000000000010111100010001000000000000001000000010000000

0100000100000000000000001000001000000001100000001100

000000000000000000000001000000100000001100010001000001000001001000100001001100010100000101

100001000001010001001100010100001000100010001100110010010100011000000100110011100100011010

000110110001110100011111000001110001111000011111000111111111110110100000000000001100000000

110000000100000000000000100001000100000011000100010000000000111111000000001110011100010001

110001110100110111010100111000010010011010011110001000101110001100011011011100100111010000

001100100100111000010101011010010100010000000011100101000011000110001111111100010000100110

82 Appendix B

File name: fractal.jpg

Size: 683 KB

Dimension: 800 X 600

Source:

http://www.nonlinearthinking.com/images/fractal.jpg

Snapshot for the file:

111111111101100011111111111000000000000000010000010010100100011001001001010001100000000000

000001000000100000000100000000010010000000000001001000000000000000000011111111111000010010

011100000100010001010111100001101001011001100000000000000000010011010100110100000000001010

100000000000000000000000000000100000000000000001110000000100010010000000000000001100000000

000000000000000000000001000000000000000100000000000000000000000100011010000000000000010100

000000000000000000000000000001000000000000000000000000011000100000000100011011000000000000

010100000000000000000000000000000001000000000000000000000000011010100000000100101000000000

000000001100000000000000000000000000000001000000000000001000000000000000000000000100110001

000000000000001000000000000000000000000000010100000000000000000000000000011100100000000100

110010000000000000001000000000000000000000000000010100000000000000000000000000100001101000

011101101001000000000000010000000000000000000000000000000001000000000000000000000000100111

000000000000000000000000001100100000000000000000000000000001001000000000000000000000000000

000000010000000000000000000000000100100000000000000000000000000000000001010000010110010001

101111011000100110010100100000010100000110100001101111011101000110111101110011011010000110

111101110000001000000011011100101110001100000000000000110010001100000011000000110100001110

100011000000110110001110100011001000111000001000000011000100110101001110100011010000110001

001110100011010100111001000000000000000000000000000000000000001110100000000000010000000000

000011000000000000000000000000000000011111111111111111000000000000000010100000000000100000

000000000100000000000000000000000000000000010000000000000000000000110010000010100000000000

110000000000000100000000000000000000000000000000010000000000000000000000100101100000000000

0001100000000100000011000000000000001100

000000000000000000000000000001000000000000011000000000000000000000000100011010000000000000

010100000000000000000000000000000001000000000000000000000001000101100000000100011011000000

000000010100000000000000000000000000000001000000000000000000000001000111100000000100101000

000000000000001100000000000000000000000000000001000000000000001000000000000000000000001000

000001000000000000010000000000000000000000000000000001000000000000000000000001001001100000

001000000010000000000000010000000000000000000000000000000001000000000000000000100101110101

1001001000000000000000000000000000

000000010000000000000000000000000100100000000000000000000000000000000001111111111101100011

111111111000000000000000010000010010100100011001001001010001100000000000000001000000100000

000100000000010010000000000001001000000000000000000011111111111011010000000000001100010000

010110010001101111011000100110010101011111010000110100110100000000000000011111111111101110

000000000000111001000001011001000110111101100010011001010000000001100100100000000000000000

000000000000000000000111111111110110110000000010000100000000000000110000001000000010000000

100000001001000010000000110000001001000010010000110000010001000010110000101000001011000100

010001010100001111000011000000110000001111000101010001100000010011000100110001010100010011

000100110001100000010001000011000000110000001100000011000000110000001100000100010000110000

001100000011000000110000001100000011000000110000001100000011000000110000001100000011000000

110000001100000011000000110000001100000011000000110000001100000011000000110000001100000011

83

Bibliography

1. A Listair Moffat, A.T., Compression and coding algorithms. 2002: Kluwer

Academic Publisher. Pages 1-6.

2. Mandal, J., An Approach towards Development of Efficient Data Compression

Algorithms and Correction Techniques. PhD. 2000, Jadavpur University, India.

3. Sebastian, D., Universal losselss data compression algorithmes. PhD. 2003,

Silesian University.

4. Huffman, D.H. A Method for the Construction of Minimum-Redundancy Codes.

in IRE. September 1952.

5. Ziv, J.a.L., A. A Compression of individual sequences via variable-rate coding.

in IEEE Transaction on Information Theory.

6. Ziviani, N., Moura, E., Navarro, G., and Baeza-Yates, R. Compression: A Key

for Next-Generation Text Retrieval Systems. in IEEE Computer. Novmber 2000.

7. Brisaboa, N., Iglesias, E., Navarro, G., and Paramá, J. An Efficient Compression

Code for Text databases. in 25th European Conference on IR Research, ECIR

Apirl 2003. Pisa, Italy.

8. Wayne, N.J., ARC File Archive Utility. 1986, Enhancement Associates.

9. Glendale, W., PKARC FAST! File Archival Utility, PKWARE, Inc.

10. Adler, M.a.M., M. . Towards Compressing Web Graphs. in IEEE Data

 Compression Conference. 2001. Utah, USA.

11. Wu, D., Hou, Y., Zhu, W., Zhang, Y., and Peha, J. Streaming Video over the

Internet: Approaches and Directions. in IEEE Transactions on Circuits and

Systems for Video Technology. March 2001.

12. Tanenbaum, A.S., Computer Networks. 2002: Prentice Hall PTR. Pages 724-

736.

13. KERCKHOFF, A. La Cryptographie Militaire. in J. des Sciences Militaries.

1883.

14. Cryptography FAQ (03/10: Basic Cryptology), "3.5. What are some properties

satisfied by every strong cryptosystem?" [cited 23 August 2006

]; Available from: http://www.faqs.org/faqs/cryptography-

faq/part03/index.html.

15. A. Hauter, M.V.C., R. Ramanathan. Compression and Encryption. CSI 801

Project Fall 1995. December 7, 1995 [cited 10 March2006]; Available from:

http://www.science.gmu.edu/~mchacko/csi801/proj-ckv.html.

16. ACT- Archiver Index, WinZip 7.0 SR-1. [cited 31 August. 2006

]; Available from: http://compression.ca/act/act-index.html.

17. How does cryptography work. 12 March 2006 [cited 12 March 2006];

Available from: http://www.pgpi.org/doc/pgpintro.

18. Mark Nelson, J.-L.G., The Data compression book. 1996: M&T Books. Pages

12-20.

19. Wagner, N.R. The Laws of cryptography with java code chapter 9 [cited 12

August 2006.]; Available from:

http://www.cs.utsa.edu/~wangner/lawbookcolor/laws.pdf.

20. Barker .E, B.W., Burr .W, Polk .W, Smid .M., Recommendation for key

management- Part 1, NIST. National Institute of Standards and Technology,

Editor. May 2006.

21. Augustine, J., Feng, W., and Jacob, J. Logic Minimization Based Approach for

Compressing Image Data. in Conf. VLSI Design. 1995. New Delhi, India.

22. Agauan, S., Baran, T. and Panetta, K. Transform-Based Image Compression by

Noise Reduction and Spatial Modification Using Boolean Minimization. in

IEEE workshop, Statistical Signal Processing. 2003. USA.

23. Introduction to Cryptography page 11. 1999 [cited 12 August 2006];

Available from: http://ivan.tubert.org/doc/introtoCrypt.pdf.

24. E, W.D.a.M. New Directions in Cryptography. in IEEE Transactions on

Information Theory. Novmber 1976.

25. Lonardi, S., Off-line data compression by textual substitution, in Computer

Sciences. 31 December 1998, Msc. UNIVERSITA DEGLI STUDI DI

PADOVA.

26. Adaptive Huffman Coding. Adaptive Huffman coding [cited 14 August 2006];

Available from: http://www.cs.cf.ac.uk/Dave/Multimedia/node212.html.

27. Boole, G., An Investigation of the laws of thought. 1954: New York:. Dover.

28. M. Morris Mano, C.R.K., Logic and computer design fundamentals. 2004:

Prentice Hall. 33-40.

29. Ercegovac, M.D., Lang, T., Moreno, J, Introduction to Digital Systems. 1999:

John Wiley and Sons Inc.

30. Mano, M.M., Digital Design, third edition. 2002: Prentice Hall. Pages 71-73.

31. wang, C.-E., Simultaneous Data Compression and Encryption CA 95819-6021.,

University, Sacramento: California State.

32. Stinson, D.R., Cryptography theory and practice. 2006: Chapman & Hall/CRC.

Page 393.

33. Bell, R.A.a.T.C. A corpus for the evaluation of lossless compression algorithms.

in IEEE Data Compression Conference (DCC’97). March 25 1997. Los

Alamitos, California.: IEEE Computer Society.

34. T. C. Bell, J.G.C., and I. H.Witten, Text Compression. 1990, Englewood Cliffs:

Prentice Hall.

35. Large Canterbury corpus. "The Large Corpus". [cited 25 August 2006];

Available from: http://corpus.canterbury.ac.nz/descriptions/.

36. Press W., T.S., Vetterling W., Flannery B., Numerical Recipes in C. Second

Edition. 1995: Reprinted with correction, Cambridge University Press.

37. ACT- Archiver Index, RAR 3.00b5. [cited 31 August. 2006]; Available from:

http://compression.ca/act/act-index.html.

38. ElQawasmeh, E. and Kattan, A. REVERSING K-MAP USAGE FOR

DEVELOPING A NEW COMPRESSION ALGORITHM. in ACIT,The

International Arab Conference on Information Technology 2004. Algeria

39. Kattan, A.” Data Compression with built in encryption”. CC401 project proposal, March

2006.

